如圖,在△ABC中,∠A=30°,∠B=45°,AC=22.
(1)求AB的長;
(2)用尺規作三角形ABC的外接圓(不寫作法,保留作圖痕跡),并求此外接圓的半徑.

2
【答案】(1).
(2)畫圖見解答;2.
6
+
2
(2)畫圖見解答;2.
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/23 5:0:2組卷:198引用:2難度:0.5
相似題
-
1.如圖,Rt△ABC內接于⊙O,∠ACB=90°,直線l與⊙O相切于點C.
(1)用無刻度的直尺和圓規作圖:過點O作射線OD∥AC,交直線l于點D.(要求:不寫作法,保留作圖痕跡)
(2)在(1)的基礎上,若AB=10,BC=8,求CD的長.發布:2025/5/24 6:0:2組卷:83引用:1難度:0.6 -
2.如圖,點P是∠AOB邊OA上的一點,按要求作(畫)圖,并填空:
(1)用圓規和直尺作線段OP的垂直平分線,交OA、OB分別于點M、N;
(2)過點M畫出表示點M到直線OB距離的線段MH;
(3)點N到直線OB的距離的大小為;發布:2025/5/24 5:0:1組卷:63引用:3難度:0.7 -
3.已知:線段AB.
求作:Rt△ABC,使得∠BAC=90°,∠C=30°.
作法:
①分別以點A和點B為圓心,AB長為半徑作弧,兩弧交于點D;
②連接BD,在BD的延長線上截取DC=BD;
③連接AC.
則△ABC為所求作的三角形.
(1)使用直尺和圓規,依作法補全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:連接AD.
∵AB=AD=BD,
∴△ABD為等邊三角形( ).(填推理的依據)
∴∠B=∠ADB=60°.
∵CD=BD,
∴AD=CD
∴∠DAC=( ).(填推理的依據)
∴∠ADB=∠C+∠DAC=60°.
∴∠C=30°.
在△ABC中,
∠BAC=180°-(∠B+∠C)=90°.發布:2025/5/24 4:30:1組卷:206引用:6難度:0.5