請(qǐng)你根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),完成對(duì)函數(shù)y=|x|-1的圖象與性質(zhì)的探究.下表給出了y與x的幾組對(duì)應(yīng)值.
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | … |
y | … | m | 1 | 0 | -1 | 0 | 1 | 2 | … |
(1)m=
2
2
;(2)在給出的平面直角坐標(biāo)系中,描出表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;
(3)根據(jù)函數(shù)圖象,當(dāng)y隨x的增大而增大時(shí),x的取值范圍是
x≥0
x≥0
;【拓展】
(4)函數(shù)y1=-|x|+1的圖象與函數(shù)y=|x|-1的圖象交于兩點(diǎn),當(dāng)y1≥y時(shí),x的取值范圍是
-1≤x≤1
-1≤x≤1
;(5)函數(shù)y2=-|x|+b(b>0)的圖象與函數(shù)y=|x|-1的圖象圍成的四邊形的形狀是
正方形
正方形
,該四邊形的面積為18時(shí),則b的值是 5
5
.【考點(diǎn)】一次函數(shù)綜合題.
【答案】2;x≥0;-1≤x≤1;正方形;5
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/14 2:0:8組卷:243引用:3難度:0.4
相似題
-
1.如圖1,兩個(gè)正方形拼接成一個(gè)“L”型的圖形,現(xiàn)用一條直線將圖形分為面積相等的兩部分.小穎在研究時(shí)發(fā)現(xiàn)了三種不同的分割方法,圖2是其中一種方法.
(1)請(qǐng)?jiān)谙旅鎴D形(圖5)中再畫(huà)出另外兩種分割方法;
(2)若小正方形的邊長(zhǎng)為2,大正方形的邊長(zhǎng)為4.小穎在利用繪圖軟件研究分割方法時(shí),將圖1放置在平面直角坐標(biāo)系中,如圖3所示,此時(shí)圖2所示的分割直線AB的表達(dá)式為y=-x+13.小穎發(fā)現(xiàn):上述三種不同的分割直線都經(jīng)過(guò)同一個(gè)點(diǎn).請(qǐng)你證明此發(fā)現(xiàn);43
(3)小穎繼續(xù)研究,又發(fā)現(xiàn)了一種分割方法,如圖4所示.請(qǐng)根據(jù)此圖,簡(jiǎn)述其作圖思路;
(4)通過(guò)上述探究過(guò)程,談?wù)勀愕氖斋@.(兩條即可)發(fā)布:2025/5/21 13:30:2組卷:144引用:2難度:0.3 -
2.如圖,在梯形ABCD中,AD∥BC,AB=CD,以邊BC所在直線為x軸,邊BC的中點(diǎn)O為原點(diǎn)建立直角坐標(biāo)平面,已知點(diǎn)B的坐標(biāo)為(-4,0),直線AB的解析式為y=2x+m.
(1)求m的值;
(2)求直線CD的解析式;
(3)若點(diǎn)A在第二象限,是否存在梯形ABCD,它的面積為30?若存在,請(qǐng)求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/1/21 8:0:1組卷:5引用:0難度:0.3 -
3.在平面直角坐標(biāo)系xOy中,直線y=kx(k≠0)在x軸及其上方的部分記為射線l.對(duì)于定點(diǎn)A(2
,0)和直線y=kx(k≠0),給出如下定義:同時(shí)將射線AO和直線y=kx分別繞點(diǎn)A和原點(diǎn)O順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到l1和l2,l1與l2的交點(diǎn)為點(diǎn)P,我們稱(chēng)點(diǎn)P為射線l的“k-α”雙旋點(diǎn).如圖,點(diǎn)P為y=2x的“2-30°”雙旋點(diǎn).3
(1)若k=-3
①在給定的平面直角坐標(biāo)系xOy中,畫(huà)出“k-90°”的雙旋點(diǎn)P1;
②直接寫(xiě)出α=30°的雙旋點(diǎn)P2的坐標(biāo) ;
③點(diǎn)P1(1,1)、P2(,3)、P3(0,2)是y=kx的“3”雙旋點(diǎn)的是 ;-3-α
(2)直線y=-2x+4分別交x軸、y軸于點(diǎn)M、N,若存在α,使直線y=kx的“k-α”雙旋點(diǎn)在線段MN上,求k的取值范圍;
(3)當(dāng)時(shí),對(duì)于任意的α,若存在某個(gè)三角形上的所有點(diǎn)都是射線y=kx的“k-α”雙旋點(diǎn),直接寫(xiě)出這個(gè)三角形面積的最大值.-3≤k≤-32發(fā)布:2025/5/21 13:0:1組卷:409引用:1難度:0.3