在平面直角坐標(biāo)系xOy中,直線(xiàn)y=kx(k≠0)在x軸及其上方的部分記為射線(xiàn)l.對(duì)于定點(diǎn)A(23,0)和直線(xiàn)y=kx(k≠0),給出如下定義:同時(shí)將射線(xiàn)AO和直線(xiàn)y=kx分別繞點(diǎn)A和原點(diǎn)O順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到l1和l2,l1與l2的交點(diǎn)為點(diǎn)P,我們稱(chēng)點(diǎn)P為射線(xiàn)l的“k-α”雙旋點(diǎn).如圖,點(diǎn)P為y=2x的“2-30°”雙旋點(diǎn).

(1)若k=-3
①在給定的平面直角坐標(biāo)系xOy中,畫(huà)出“k-90°”的雙旋點(diǎn)P1;
②直接寫(xiě)出α=30°的雙旋點(diǎn)P2的坐標(biāo) (0,2)(0,2);
③點(diǎn)P1(1,1)、P2(3,3)、P3(0,2)是y=kx的“-3-α”雙旋點(diǎn)的是 P2,P3P2,P3;
(2)直線(xiàn)y=-2x+4分別交x軸、y軸于點(diǎn)M、N,若存在α,使直線(xiàn)y=kx的“k-α”雙旋點(diǎn)在線(xiàn)段MN上,求k的取值范圍;
(3)當(dāng)-3≤k≤-32時(shí),對(duì)于任意的α,若存在某個(gè)三角形上的所有點(diǎn)都是射線(xiàn)y=kx的“k-α”雙旋點(diǎn),直接寫(xiě)出這個(gè)三角形面積的最大值.

3
k
=
-
3
3
-
3
-
α
-
3
≤
k
≤
-
3
2
【考點(diǎn)】一次函數(shù)綜合題.
【答案】(0,2);P2,P3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/21 13:0:1組卷:409引用:1難度:0.3
相似題
-
1.如圖1,兩個(gè)正方形拼接成一個(gè)“L”型的圖形,現(xiàn)用一條直線(xiàn)將圖形分為面積相等的兩部分.小穎在研究時(shí)發(fā)現(xiàn)了三種不同的分割方法,圖2是其中一種方法.
(1)請(qǐng)?jiān)谙旅鎴D形(圖5)中再畫(huà)出另外兩種分割方法;
(2)若小正方形的邊長(zhǎng)為2,大正方形的邊長(zhǎng)為4.小穎在利用繪圖軟件研究分割方法時(shí),將圖1放置在平面直角坐標(biāo)系中,如圖3所示,此時(shí)圖2所示的分割直線(xiàn)AB的表達(dá)式為y=-x+13.小穎發(fā)現(xiàn):上述三種不同的分割直線(xiàn)都經(jīng)過(guò)同一個(gè)點(diǎn).請(qǐng)你證明此發(fā)現(xiàn);43
(3)小穎繼續(xù)研究,又發(fā)現(xiàn)了一種分割方法,如圖4所示.請(qǐng)根據(jù)此圖,簡(jiǎn)述其作圖思路;
(4)通過(guò)上述探究過(guò)程,談?wù)勀愕氖斋@.(兩條即可)發(fā)布:2025/5/21 13:30:2組卷:144引用:2難度:0.3 -
2.如圖,在梯形ABCD中,AD∥BC,AB=CD,以邊BC所在直線(xiàn)為x軸,邊BC的中點(diǎn)O為原點(diǎn)建立直角坐標(biāo)平面,已知點(diǎn)B的坐標(biāo)為(-4,0),直線(xiàn)AB的解析式為y=2x+m.
(1)求m的值;
(2)求直線(xiàn)CD的解析式;
(3)若點(diǎn)A在第二象限,是否存在梯形ABCD,它的面積為30?若存在,請(qǐng)求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/1/21 8:0:1組卷:5引用:0難度:0.3 -
3.如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線(xiàn)y=-x+7分別交x、y軸于A、B兩點(diǎn),直線(xiàn)y=k1x+15分別交x軸、y軸于C、D兩點(diǎn),BD:AC=8:3.
(1)如圖1,求k1的值;
(2)如圖2,點(diǎn)Q為線(xiàn)段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)Q作PQ⊥x軸,交線(xiàn)段CD于點(diǎn)P,設(shè)點(diǎn)Q的橫坐標(biāo)為t,線(xiàn)段PQ的長(zhǎng)度為d,求d與t之間的函數(shù)解析式(不要求寫(xiě)出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,過(guò)點(diǎn)C的直線(xiàn)y=k2x-4交y軸于點(diǎn)E,點(diǎn)P關(guān)于直線(xiàn)AB的對(duì)稱(chēng)點(diǎn)為點(diǎn)F,G為線(xiàn)段AB延長(zhǎng)線(xiàn)上一點(diǎn),,連接GF并延長(zhǎng)交x軸于點(diǎn)H,交線(xiàn)段CE于點(diǎn)M,N為線(xiàn)段BA延長(zhǎng)線(xiàn)上一點(diǎn),連接FN,F(xiàn)N=2MF,∠MHC-∠BNF=45°,求點(diǎn)N的坐標(biāo).BG=22
?發(fā)布:2025/5/21 21:0:1組卷:249引用:1難度:0.1
相關(guān)試卷