將小球(看作一點)以速度v1豎直上拋,上升速度隨時間推移逐漸減少直至為0,此時小球達到最大高度,小球相對于拋出點的高度y(m)與時間t(s)的函數解析式為兩部分之和,其中一部分為速度v1(m/s)與時間t(s)的積,另一部分與時間t(s)的平方成正比.若上升的初始速度v1=10m/s,且當t=1s時,小球達到最大高度.
?(1)求小球上升的高度y與時間t的函數關系式(不必寫范圍),并寫出小球上升的最大高度;
(2)如圖,平面直角坐標系中,y軸表示小球相對于拋出點的高度,x軸表示小球距拋出點的水平距離,向上拋出小球時再給小球一個水平向前的均勻速度v2(m/s),發現小球運動的路線為一拋物線,其相對于拋出點的高度y(m)與時間t(s)的函數解析式與(1)中的解析式相同.
①若v2=5m/s,當 t=32s 時,小球的坐標為 (152,154)(152,154),小球上升的最高點坐標為 (5,5)(5,5);求小球上升的高度y與小球距拋出點的水平距離x之間的函數關系式;
②在小球的正前方的墻上有一高 3536m的小窗戶PQ,其上沿P的坐標為(6,154),若小球恰好能從窗戶中穿過(不包括恰好去中點P,Q,墻厚度不計),請直接寫出小球的水平速度v2的取值范圍.
t
=
3
2
s
15
2
15
4
15
2
15
4
35
36
m
15
4
【考點】二次函數的應用.
【答案】(,);(5,5)
15
2
15
4
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:505引用:4難度:0.5
相似題
-
1.如圖,AB,CD是兩個過江電纜的鐵塔,塔高均為40米,AB的中點為P,小麗在距塔底B點西50米的地面E點恰好看到點E,P,C在一直線上,且P,D離江面的垂直高度相等.跨江電纜AC因重力自然下垂近似成拋物線形,為了保證過往船只的安全,電纜AC下垂的最低點距江面的高度不得少于30米.已知塔底B距江面的垂直高度為6米,電纜AC下垂的最低點剛好滿足最低高度要求.
(1)求電纜最低點與河岸EB的垂直高度h及兩鐵塔軸線間的距離(即直線AB和CD之間的水平距離).
(2)求電纜AC形成的拋物線的二次項系數.發布:2025/5/25 2:0:6組卷:177引用:2難度:0.4 -
2.有一塊矩形地塊ABCD,AB=20米,BC=30米.為美觀,擬種植不同的花卉,如圖所示,將矩形ABCD分割成四個等腰梯形及一個矩形,其中梯形的高相等,均為x米.現決定在等腰梯形AEHD和BCGF中種植甲種花卉;在等腰梯形ABFE和CDHG中種植乙種花卉;在矩形EFGH中種植丙種花卉.甲、乙、丙三種花卉的種植成本分別為20元/米2、60元/米2、40元/米2,設三種花卉的種植總成本為y元.
(1)當x=5時,求種植總成本y;
(2)求種植總成本y與x的函數表達式,并寫出自變量x的取值范圍;
(3)若甲、乙兩種花卉的種植面積之差不超過120平方米,求三種花卉的最低種植總成本.發布:2025/5/25 1:0:1組卷:2658引用:3難度:0.4 -
3.某時令水果上市的時候,一果農以“線上”與“線下”相結合的方式一共銷售了200箱該種水果.已知“線上”銷售的每箱利潤為50元.“線下”銷售的每箱利潤y(元)與銷售量x(箱)之間的函數關系如圖中線段AB.
(1)若“線上”與“線下”銷售量相同,求果農售完這200箱水果獲得的總利潤;
(2)當“線下”的銷售利潤為4500元時,求“線下”的銷售量;
(3)實際“線下”銷售時,每箱還要支出其它相關費用m元(0<m<10),若“線上”與“線下”售完這200箱該水果所獲得的最大總利潤為11225元,求m的值.發布:2025/5/25 1:0:1組卷:143引用:4難度:0.4