閱讀材料:
利用公式法,可以將一些形如ax2+bx+c(a≠0)的多項(xiàng)式變形為a(x+m)2+n的形式,我們把這樣的變形方法叫做多項(xiàng)式ax2+bx+c(a≠0)的配方法,運(yùn)用多項(xiàng)式的配方法及平方差公式能對一些多項(xiàng)式進(jìn)行因式分解例如x2+4x-5=x2+4x+(42)2-(42)2-5=(x+2)2-9=(x+2+3)(x+2-3)=(x+5)(x-1).
根據(jù)以上材料,解答下列問題.
(1)分解因式(利用公式法):x2+2x-8;
(2)求多項(xiàng)式x2+4x-3的最小值;
(3)已知a,b,c是△ABC的三邊長,且滿足a2+b2+c2+50=6a+8b+10c,求△ABC的周長.
4
2
4
2
【考點(diǎn)】因式分解的應(yīng)用.
【答案】(1)(x-2)(x+4);
(2)-7;
(3)12.
(2)-7;
(3)12.
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/6 8:0:9組卷:3578引用:12難度:0.3
相似題
-
1.如果x3+ax2+bx+8能被x2+3x+2整除,則
的值是( )baA.2 B. 12C.3 D. 13發(fā)布:2025/5/23 14:30:1組卷:1057引用:1難度:0.5 -
2.一個各位數(shù)字都不為0的四位正整數(shù)m,若千位與個位數(shù)字相同,百位與十位數(shù)字相同,則稱這個數(shù)m為“雙雙胞蛋數(shù)”,將千位與百位數(shù)字交換,十位與個位數(shù)字交換,得到一個新的“雙胞蛋數(shù)”m′,并規(guī)定
.若已知數(shù)m為“雙胞蛋數(shù)”,設(shè)m的千位數(shù)字為a,百位數(shù)字為b,且a≠b,若F(m)=m-m′11是一個完全平方數(shù),則a-b=,滿足條件的m的最小值為 .F(m)54發(fā)布:2025/5/23 5:0:2組卷:389引用:2難度:0.7 -
3.已知非負(fù)數(shù)a,b,c(均不為0),滿足bc=
(a2-b2-c2),則下列結(jié)論一定正確的是( )12A.a(chǎn)=b+c B.b=a+c C.c=b+a D.a(chǎn)b=a2+c2 發(fā)布:2025/5/23 7:30:1組卷:681引用:4難度:0.5