已知拋物線y=ax2+bx+c與x軸交于點A(-1,0),點B(3,0),與y軸交于點C(0,3).頂點為點D.
(1)求拋物線的解析式;
(2)若過點C的直線交線段AB于點E,且S△ACE:S△CEB=3:5,求直線CE的解析式;
(3)若點P在拋物線上,點Q在x軸上,當以點D,C,P,Q為頂點的四邊形是平行四邊形時,求點P的坐標;
(4)已知點H(0,458),G(2,0),在拋物線對稱軸上找一點F,使HF+AF的值最?。藭r,在拋物線上是否存在一點K,使KF+KG的值最小?若存在,求出點K的坐標;若不存在,請說明理由.
45
8
【考點】二次函數綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:3217引用:6難度:0.1
相似題
-
1.如圖,拋物線y=ax2+bx-4(a≠0)與x軸交于點A,點B,與y軸交于點C,其對稱軸為直線x=1.過點A的直線y=x+2與拋物線交于另一點E.
(1)該拋物線的解析式為 .
(2)點Q是x軸上的一動點,當△AQE為等腰三角形時,直接寫出Q點的坐標;
(3)點P是第四象限內拋物線上的一個點,過點P作PH⊥AE于H.若PH取得最大值時,求這個最大值;
(4)M是拋物線對稱軸上一點,過M點作MN⊥y軸于點N.當EM+AN最短時,求點M的坐標.發布:2025/5/23 19:30:1組卷:254引用:4難度:0.2 -
2.在平面直角坐標系中,拋物線G:y=ax2+bx+1(a>0)經過點A(2,1),頂點為點B.
(1)求a與b的數量關系;
(2)設拋物線G的對稱軸為直線l,過A作AM⊥l,垂足為M,且MB=2AM.
①當m-1≤x≤m+1時,求拋物線G的最高點的縱坐標(用含m的式子表示);
②平移拋物線G,當它與直線AB最多只有一個交點時,求平移的最短距離.發布:2025/5/23 19:30:1組卷:686引用:1難度:0.4 -
3.拋物線y=ax2-4經過A、B兩點,且OA=OB,直線EC過點E(4,-1),C(0,-3),點D是線段OA(不含端點)上的動點,過D作PD⊥x軸交拋物線于點P,連接PC、PE.
(1)求拋物線與直線CE的解析式;
(2)求證:PC+PD為定值;
(3)在第四象限內是否存在一點Q,使得以C、P、E、Q為頂點的平行四邊形面積最大,若存在,求出Q點坐標;若不存在,請說明理由.發布:2025/5/23 19:30:1組卷:154引用:1難度:0.4