新冠肺炎是近百年來人類遭遇的影響范圍最廣的全球性大流行病.面對前所未知,突如其來,來勢洶洶的疫情天災,中央出臺了一系列助力復工復產好政策城市快遞行業運輸能力迅速得到恢復,市民的網絡購物也越來越便利.根據大數據統計,某條快遞線路運行時,發車時間間隔x(單位:分鐘)滿足:4≤x≤15,x∈N,平均每趟快遞車輛的載件個數f(x)(單位:個)與發車時間間隔x近似地滿足f(x)=1800-15(9-x)2,4≤x<9 1800,9≤x≤15
,其中x∈N.
(1)若平均每趟快遞車輛的載件個數不超過1500個,試求發車時間間隔x的值;
(2)若平均每趟快遞車輛每分鐘的凈收益g(x)=6f(x)-7920x-80(單位:元),問當發車時間間隔x為多少時,平均每趟快遞車輛每分鐘的凈收益最大?并求出最大凈收益.
f
(
x
)
=
1800 - 15 ( 9 - x ) 2 , 4 ≤ x < 9 |
1800 , 9 ≤ x ≤ 15 |
g
(
x
)
=
6
f
(
x
)
-
7920
x
-
80
【考點】根據實際問題選擇函數類型.
【答案】(1)平均每趟快遞車輛的載件個數不超過1500個,發車時間間隔為4分鐘;
(2)發車時間間隔為7分鐘時,平均每趟快遞車輛每分鐘的凈收益最大,最大凈收益為280元.
(2)發車時間間隔為7分鐘時,平均每趟快遞車輛每分鐘的凈收益最大,最大凈收益為280元.
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:98引用:1難度:0.6
相似題
-
1.隨著科學技術的發展,放射性同位素技術已經廣泛應用于醫學、航天等眾多領域,并取得了顯著經濟效益.假設某放射性同位素的衰變過程中,其含量P(單位:貝克)與時間t(單位:天)滿足函數關系P(t)=
,其中P0為t=0時該放射性同位素的含量.已知t=15時,該放射性同位素的瞬時變化率為P02-t30,則該放射性同位素含量為4.5貝克時,衰變所需時間為( )-32ln210A.20天 B.30天 C.45天 D.60天 發布:2024/12/29 13:30:1組卷:157引用:11難度:0.7 -
2.隨著“低碳生活,綠色出行”理念的普及,新能源汽車正逐漸成為福清人喜愛的交通工具.據預測,福清某新能源汽車4S店從2023年1月份起的前x個月,顧客對比亞迪汽車的總需量R(x)(單位:輛)與x的關系會近似地滿足
(其中x∈N*且x≤6),該款汽車第x月的進貨單價W(x)(單位:元)與x的近似關系是W(x)=150000+2000x.R(x)=12x(x+1)(39-2x)
(1)由前x個月的總需量R(x),求出第x月的需求量g(x)(單位:輛)與x的函數關系式;
(2)該款汽車每輛的售價為185000元,若不計其他費用,則這個汽車4S店在2023年的第幾個月的月利潤f(x)最大,最大月利潤為多少元?發布:2024/12/29 11:30:2組卷:24引用:3難度:0.5 -
3.某工廠生產某種零件的固定成本為20000元,每生產一個零件要增加投入100元,已知總收入Q(單位:元)關于產量x(單位:個)滿足函數:Q=
.400x-12x2,0≤x≤40080000,x>400
(1)將利潤P(單位:元)表示為產量x的函數;(總收入=總成本+利潤)
(2)當產量為何值時,零件的單位利潤最大?最大單位利潤是多少元?(單位利潤=利潤÷產量)發布:2024/12/29 13:0:1組卷:234引用:12難度:0.5