將兩個數軸平行放置,并使二者的刻度數上下對齊,再將兩個數軸的原點連接起來,就構成一個“雙軸系”.定義“雙軸系”中兩個點A、B的距離:如果A、B兩點在同一個數軸上,則二者之間的距離定義和通常的距離一致,AB=|a-b|;如果A、B兩點分別位于兩個數軸上,定義AB=|a-b|+1.

利用“雙軸系”定義一種“有向數”,記號是在通常數的右邊加上“↑”或“↓”,例如,“2↑”表示上層數軸中表示數“2”的點,“-3↓”表示下層數軸中表示數“-3”的點,“0↑”、“0↓”分別表示上下兩個數軸的原點.
(1)在雙軸系中3↑與5↑的距離為:22;2↑與-3↓的距離為 66;
(2)在(1)的假設下,現有只電子螞蟻甲從“0↑”所表示的點出發不斷跳躍,依次眺至1↑、12↑、13↑、23↑、14↑、12↑、34↑、15↑、25↑、…,另有一只電子螞蟻乙從“0↓”所表示的點出發,然后跳躍到1↓,接著又跳回0↓,其后再次跳到1↓,下一步又跳回0↓,按此規律在0↓和1↓之間來回跳動.假設兩只螞蟻同時跳躍同時落下,步調一致.
①當螞蟻甲第3次跳到12↑所表示的點時,請問此時螞蟻甲共跳躍了多少次?
②當甲乙兩只螞蟻的距離為1110時,請直接寫出3個符合條件的跳躍次數.
1
2
1
3
2
3
1
4
1
2
3
4
1
5
2
5
1
2
11
10
【答案】2;6
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/10/10 0:0:4組卷:185難度:0.5
相似題
-
1.下列圖形都是由同樣大小的平行四邊形按一定的規律組成,其中,第①個圖形中一共有1個平行四邊形,第②個圖形中一共有5個平行四邊形,第③個圖形中一共有11個平行四邊形,…則第⑥個圖形中平行四邊形的個數為( ?。?br />
A.55 B.42 C.41 D.29 發布:2024/12/23 11:0:1組卷:550難度:0.9 -
2.把黑色三角形按如圖所示的規律拼圖案,其中第①個圖案中有3個黑色三角形,第②個圖案中有7個黑色三角形,第③個圖案中有11個黑色三角形,……,按此規律排列下去,則第⑧個圖案中黑色三角形的個數為( )
A.27 B.31 C.33 D.35 發布:2024/12/16 2:30:1組卷:91引用:3難度:0.6 -
3.用棋子擺出下列一組三角形,三角形每邊有n枚棋子,每個三角形的棋子總數是S.按此規律推斷,當三角形邊上有n枚棋子時,該三角形的棋子總數S等于( )
A.3n-3 B.n-3 C.2n-2 D.2n-3 發布:2024/12/16 5:30:2組卷:330引用:15難度:0.9