做隨機拋擲一枚紀念幣的試驗,得到的結果如下表所示:
拋擲次數m | 500 | 1000 | 1500 | 2000 | 2500 | 3000 | 4000 | 5000 |
“正面向上”的次數n | 265 | 512 | 793 | 1034 | 1306 | 1558 | 2083 | 2598 |
“正面向上”的頻率 n m |
0.530 | 0.512 | 0.529 | 0.517 | 0.522 | 0.519 | 0.521 | 0.520 |
①當拋擲次數是1000時,“正面向上”的頻率是0.512,所以“正面向上”的概率是0.512;
②隨著試驗次數的增加,“正面向上”的頻率總在0.520附近擺動,顯示出一定的穩定性,可以估計“正面向上”的概率是0.520;
③若再次做隨機拋擲該紀念幣的試驗,則當拋擲次數為3000時,出現“正面向上”的次數不一定是1558次.
其中所有合理推斷的序號是( )
【考點】利用頻率估計概率.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/10 8:0:9組卷:918引用:11難度:0.7
相似題
-
1.在一個不透明的口袋里裝有若干個相同的紅球,為了估計袋中紅球的數量,八(1)班學生在數學實驗室分組做摸球試驗:每組先將10個與紅球大小形狀完全相同的白球裝入袋中,攪勻后從中隨機摸出一個球并記下顏色,再把它放回袋中,不斷重復.下表是這次活動統計匯總各小組數據后獲得的全班數據統計表:
摸球的次數s 150 300 600 900 1200 1500 摸到白球的頻數n 63 a 247 365 484 606 摸到白球的頻率 ns0.420 0.410 0.412 0.406 0.403 b
(2)請估計:當次數s很大時,摸到白球的頻率將會接近 (精確到0.1);
(3)請推算:摸到紅球的概率是 (精確到0.1);
(4)試估算:這一個不透明的口袋中紅球有 個.發布:2024/12/23 9:0:2組卷:2376引用:23難度:0.3 -
2.一個不透明的口袋中放著若干個紅球和黑球,這兩種球除顏色外沒有其他任何區別,袋中的球已經攪勻,閉眼從口袋中摸出一個球,記下顏色后放回攪勻,經過大量重復試驗發現摸到黑球的頻率逐漸穩定在0.4附近.
(1)估計摸到紅球的概率是 ;
(2)如果袋中有黑球12個,求袋中有幾個球;
(3)在(2)的條件下,又放入n個黑球,再經過大量重復試驗發現摸到黑球的頻率逐漸穩定在0.7附近,求n的值.發布:2025/5/21 11:30:1組卷:384引用:4難度:0.6 -
3.一個不透明的盒子里有9個黃球和若干個紅球,紅球和黃球除顏色外其他完全相同,每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后再放回盒子,通過大量重復摸球試驗后發現,摸到黃球的頻率穩定在30%,那么估計盒子中紅球的個數為 .
發布:2025/5/21 13:0:1組卷:171引用:5難度:0.5