三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽制作了一張“勾股圓方圖”以驗(yàn)證勾股定理,后世也稱“趙爽弦圖”.實(shí)際上,趙爽弦圖與完全平方公式有著密切的聯(lián)系.如圖是由8個(gè)全等的直角三角形拼成,其中直角邊分別為a,b,請(qǐng)回答以下問(wèn)題:
(1)如圖,正方形ABCD的面積為 (a+b)2(a+b)2,正方形IJKL的面積為 (a-b)2(a-b)2;(用含a,b的式子表示)
(2)根據(jù)圖中正方形ABCD的面積及正方形IJKL的面積的關(guān)系,可得(a+b)2,ab,(a-b)2的等量關(guān)系為 (a+b)2=4ab+(a-b)2(a+b)2=4ab+(a-b)2;
(3)請(qǐng)通過(guò)運(yùn)算證明上述等量關(guān)系;
(4)記正方形ABCD,正方形EFGH,正方形IJKL的面積分別為S1,S2,S3,若S1+S2+S3=30,直角三角形AEH的面積為32,則求(a-b)2的值.
3
2
【答案】(a+b)2;(a-b)2;(a+b)2=4ab+(a-b)2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:317引用:2難度:0.5
相似題
-
1.如圖,“趙爽弦圖”由4個(gè)全等的直角三角形所圍成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若圖中大正方形的面積為35,小正方形的面積為3,則(a+b)2的值為 .
發(fā)布:2025/5/24 13:0:1組卷:69引用:1難度:0.6 -
2.小慧在課外閱讀時(shí)遇到了一個(gè)與勾股定理有關(guān)的故事:古希臘哲學(xué)家柏拉圖對(duì)勾股定理很有研究,曾得到勾股數(shù)的一個(gè)結(jié)論:如果m表示大于1的整數(shù),則a=2m,b=m2-1,c=m2+1構(gòu)成勾股數(shù),你能證明柏拉圖這個(gè)結(jié)論嗎?并利用這個(gè)結(jié)論寫出兩組勾股數(shù).(勾股數(shù)定義:若三角形三邊長(zhǎng)a、b、c都是正整數(shù),且滿足a2+b2=c2,那么a、b、c稱為一組勾股數(shù)).
發(fā)布:2025/5/25 1:0:1組卷:28引用:1難度:0.5 -
3.漢代數(shù)學(xué)家趙爽為了證明勾股定理,構(gòu)造了一副“弦圖”,后人稱其為“趙爽弦圖”.如圖,大正方形ABCD由四個(gè)全等的直角三角形和一個(gè)小正方形組成,若∠ADE=∠AED,
,則△ADE的面積為( )AD=25A.6 B.5 C. 25D. 210發(fā)布:2025/5/25 11:30:2組卷:357引用:3難度:0.5