黎曼函數是一個特殊的函數,由德國著名的數學家黎曼發現并提出,在高等數學中有著廣泛應用,其定義為:x∈[0,1]時,R(x)=1q,x=pq(p,q∈N+,pq為既約真分數) 0,x=0,1和(0,1)內的無理數
.若數列an=R(n-1n),n∈N+,則下列結論:①R(x)的函數圖像關于直線x=12對稱;
②an=1n;
③an+1<an;
④n∑i=1ai≥lnn+12;
⑤n∑i=1aiai+1<12.
其中正確的是( )
R
(
x
)
=
1 q , x = p q ( p , q ∈ N + , p q 為既約真分數 ) |
0 , x = 0 , 1 和 ( 0 , 1 ) 內的無理數 |
a
n
=
R
(
n
-
1
n
)
,
n
∈
N
+
x
=
1
2
a
n
=
1
n
n
∑
i
=
1
a
i
≥
ln
n
+
1
2
n
∑
i
=
1
a
i
a
i
+
1
<
1
2
【考點】數列與函數的綜合;命題的真假判斷與應用.
【答案】D
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/12/20 7:0:1組卷:65引用:3難度:0.5
相似題
-
1.已知點A
是函數f(x)=ax(a>0且a≠1)的圖象上一點,等比數列an的前n項和為f(n)-c,數列bn(bn>0)的首項為c,且前n項和Sn滿足(1,13)(n≥2).Sn-Sn-1=Sn+Sn-1
(1)求數列{an}與{bn}的通項公式.
(2)若數列的前n項和為Tn,問滿足Tn{1bnbn+1}的最小整數是多少?>10002011
(3)若,求數列Cn的前n項和Pn.Cn=-2bnan發布:2025/1/12 8:0:1組卷:36引用:3難度:0.1 -
2.已知一組2n(n∈N*)個數據:a1,a2,…,a2n,滿足:a1≤a2≤…≤a2n,平均值為M,中位數為N,方差為s2,則( )
A.an≤M≤an+1 B.an≤N≤an+1 C.函數 的最小值為2ns2f(x)=2n∑i=1(x-ai)2D.若a1,a2,…,a2n成等差數列,則M=N 發布:2024/12/29 7:30:2組卷:54引用:4難度:0.5 -
3.已知公比為q的正項等比數列{an},其首項a1>1,前n項和為Sn,前n項積為Tn,且函數f(x)=x(x+a1)(x+a2)?(x+a9)在點(0,0)處切線斜率為1,則( )
A.數列{an}單調遞增 B.數列{lgan}單調遞減 C.n=4或5時,Tn取值最大 D. Sn<1q4(1-q)發布:2024/12/29 10:30:1組卷:36引用:3難度:0.5