函數f(x)=lnx+12ax2-(a+2)x+12a+3,其中a≥1.
(1)若函數f(x)在區間[x1,x2]上單調遞減,求x2-x1的最大值;
(2)曲線C:y=f(x)在(1,1)處的切線為l,若直線l與曲線C有且僅有一個公共點,求a滿足的條件.
f
(
x
)
=
lnx
+
1
2
a
x
2
-
(
a
+
2
)
x
+
1
2
a
+
3
【答案】(1).
(2)a=1.
5
(2)a=1.
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/7/11 8:0:9組卷:13引用:2難度:0.6
相似題
-
1.已知函數f(x)=x3-2kx2+x-3在R上不單調,則k的取值范圍是 ;
發布:2024/12/29 13:0:1組卷:236引用:3難度:0.8 -
2.在R上可導的函數f(x)的圖象如圖示,f′(x)為函數f(x)的導數,則關于x的不等式x?f′(x)<0的解集為( )
A.(-∞,-1)∪(0,1) B.(-2,-1)∪(1,2) C.(-1,0)∪(1,+∞) D.(-∞,-2)∪(2,+∞) 發布:2024/12/29 13:0:1組卷:265引用:7難度:0.9 -
3.已知函數f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數f(x)在(0,+∞)上單調遞增,求實數a的取值范圍;
(Ⅱ)若函數f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發布:2024/12/29 13:30:1組卷:143引用:2難度:0.2