如圖,以直角三角形AOC的直角頂點(diǎn)O為原點(diǎn),以O(shè)C、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點(diǎn)A(0,a),C(b,0)滿足a-2b+|b-2|=0.D為線段AC的中點(diǎn).在平面直角坐標(biāo)系中,以任意兩點(diǎn)P(x1,y1)、Q(x2,y2)為端點(diǎn)的線段中點(diǎn)坐標(biāo)為(x1+x22,y1+y22).

(1)則A點(diǎn)的坐標(biāo)為(0,4)(0,4);點(diǎn)C的坐標(biāo)為(2,0)(2,0).D點(diǎn)的坐標(biāo)為(1,2)(1,2).
(2)已知坐標(biāo)軸上有兩動(dòng)點(diǎn)P、Q同時(shí)出發(fā),P點(diǎn)從C點(diǎn)出發(fā)沿x軸負(fù)方向以1個(gè)單位長度每秒的速度勻速移動(dòng),Q點(diǎn)從O點(diǎn)出發(fā)以2個(gè)單位長度每秒的速度沿y軸正方向移動(dòng),點(diǎn)Q到達(dá)A點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.
(3)點(diǎn)F是線段AC上一點(diǎn),滿足∠FOC=∠FCO,點(diǎn)G是第二象限中一點(diǎn),連OG,使得∠AOG=∠AOF.點(diǎn)E是線段OA上一動(dòng)點(diǎn),連CE交OF于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動(dòng)的過程中,∠OHC+∠ACE∠OEC的值是否會(huì)發(fā)生變化?若不變,請求出它的值;若變化,請說明理由.
a
-
2
b
+
|
b
-
2
|
=
0
(
x
1
+
x
2
2
y
1
+
y
2
2
)
∠
OHC
+
∠
ACE
∠
OEC
【考點(diǎn)】三角形綜合題.
【答案】(0,4);(2,0);(1,2)
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1214引用:6難度:0.4
相似題
-
1.在△ABC和△EDC中,∠ACB=∠ECD=90°,BC=k?AC,CD=k?CE.
(1)如圖1,當(dāng)k=1時(shí),探索AE與BD的關(guān)系;
(2)如圖2,當(dāng)k≠1時(shí),請?zhí)剿鰽E與BD的關(guān)系,并證明;
(3)如圖3,在(2)的條件下,分別在BD、AE上取點(diǎn)M、N,使得BD=m?MD,AE=m?NE,試探索CN與CM的關(guān)系,并證明.發(fā)布:2025/5/22 16:30:1組卷:88引用:1難度:0.1 -
2.在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,連接CE.
(1)如圖1,若點(diǎn)D在BC邊上,AC,DE相交于F點(diǎn).
①求證:BD=CE;
②若AF=DF,AB=5,BC=6,求BD的長.
(2)如圖2,若∠BAC=90°,M為BE的中點(diǎn),連接AM,求證:AM⊥CD.發(fā)布:2025/5/22 16:30:1組卷:211引用:3難度:0.1 -
3.在四邊形ABCD中,O是邊BC上的一點(diǎn).若△OAB≌△OCD,則點(diǎn)O叫做該四邊形的“等形點(diǎn)”.
(1)正方形 “等形點(diǎn)”(填“存在”或“不存在”);
(2)如圖,在四邊形ABCD中,邊BC上的點(diǎn)O是四邊形ABCD的“等形點(diǎn)”.已知CD=4,OA=5,BC=12,連接AC,求AC的長;2
(3)在四邊形EFGH中,EH∥FG.若邊FG上的點(diǎn)O是四邊形EFGH的“等形點(diǎn)”,求的值.OFOG發(fā)布:2025/5/22 14:0:1組卷:2058引用:4難度:0.4