定義:把經過三角形的一個頂點并與其對邊所在直線相切的圓叫做三角形的“切接圓”,根據上述定義解決下列問題:在Rt△ABC中,∠C=90°,AC=6,BC=8.
(1)如圖1,點D在AB邊上,⊙D過點A且與BC相切于點E,則⊙D是Rt△ABC的一個“切接圓”,求該圓的半徑DE;
(2)過點A的Rt△ABC的“切接圓”中,是否存在半徑的最小值,若存在請求出最小值,若不存在請說明理由;
(3)如圖2,把Rt△ABC放在平面直角坐標系中,使點B與原點O重合,點C落在x軸正半軸上.求證:以拋物線y=112(x-8)2+3上任意一點為圓心都可以作過點A的Rt△ABC的“切接圓”.

y
=
1
12
(
x
-
8
)
2
+
3
【考點】二次函數綜合題.
【答案】(1);
(2)3;
(3)證明見解析部分.
15
4
(2)3;
(3)證明見解析部分.
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/11/15 11:0:2組卷:266引用:2難度:0.1
相似題
-
1.如圖,在平面直角坐標系中,二次函數y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點的左側,B點的坐標為(3,0),與y軸交于C(0,-3)點,點P是直線BC下方的拋物線上一動點.
(1)求這個二次函數的表達式;
(2)在拋物線對稱軸上找一點D,使∠DCB=∠CBD,求點D的坐標;
(3)在直線BC找一點Q,使得△QOC為等腰三角形,寫出Q點坐標.發布:2025/6/6 13:30:1組卷:142引用:3難度:0.1 -
2.如圖,拋物線y=ax2+bx+c的圖象交x軸于A(-3,0)、B兩點,頂點為點C(-1,-2
),連接BC.3
(1)求拋物線的解析式;
(2)如圖1,作∠ABC的角平分線BE,交對稱軸于交點D,交拋物線于點E,求DE的長;
(3)如圖2,在(2)的條件下,點F是線段BC上的一動點(點F不與點C和點B重合),連接DF,將△BDF沿DF折疊,點B的對應點為點B1,△DFB1與△BDC的重疊部分為△DFG,請探究,在坐標平面內是否存在一點H,使以點D、F、G、H為頂點的四邊形是矩形?若存在,請求出點H的坐標,若不存在,請說明理由.發布:2025/6/6 18:30:1組卷:663引用:4難度:0.1 -
3.如圖,拋物線C1:y1=ax2+2ax(a>0)與x軸交于點A,頂點為點P.
(1)直接寫出拋物線C1的對稱軸是 ,用含a的代數式表示頂點P的坐標 ;
(2)把拋物線C1繞點M(m,0)旋轉180°得到拋物線C2(其中m≥0),拋物線C2與x軸右側的交點為點B,頂點為點Q.
①如圖1,當m=0時,求AB的值;
②若m=2,是否存在△ABP為等腰三角形,若存在請求出a的值,若不存在,請說明理由;
③當四邊形APBQ為矩形時,請求出m與a之間的數量關系,并直接寫出當a=3時矩形APBQ的面積.發布:2025/6/6 8:30:1組卷:19引用:2難度:0.2