已知拋物線C:y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)K(-1,0)的直線l與C相交于A、B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為D.
(Ⅰ)證明:點(diǎn)F在直線BD上;
(Ⅱ)設(shè)FA?FB=89,求△BDK的內(nèi)切圓M的方程.
FA
?
FB
=
8
9
【考點(diǎn)】直線與圓錐曲線的綜合;數(shù)量積表示兩個(gè)平面向量的夾角;恒過(guò)定點(diǎn)的直線;圓的標(biāo)準(zhǔn)方程;拋物線的焦點(diǎn)與準(zhǔn)線.
【答案】(Ⅰ)證明:拋物線C:y2=4x①的焦點(diǎn)為F(1,0),
設(shè)過(guò)點(diǎn)K(-1,0)的直線L:x=my-1,
代入①,整理得
y2-4my+4=0,
設(shè)L與C 的交點(diǎn)A(x1,y1),B(x2,y2),則
y1+y2=4m,y1y2=4,
點(diǎn)A關(guān)于X軸的對(duì)稱點(diǎn)D為(x1,-y1).
BD的斜率k1===,
BF的斜率k2=.
要使點(diǎn)F在直線BD上
需k1=k2
需4(x2-1)=y2(y2-y1),
需4x2=,
上式成立,∴k1=k2,
∴點(diǎn)F在直線BD上.
(Ⅱ)△BDK的內(nèi)切圓M的方程為(x-)2+y2=.
設(shè)過(guò)點(diǎn)K(-1,0)的直線L:x=my-1,
代入①,整理得
y2-4my+4=0,
設(shè)L與C 的交點(diǎn)A(x1,y1),B(x2,y2),則
y1+y2=4m,y1y2=4,
點(diǎn)A關(guān)于X軸的對(duì)稱點(diǎn)D為(x1,-y1).
BD的斜率k1=
y
1
+
y
2
x
2
-
x
1
4
m
(
m
y
2
-
1
)
-
(
m
y
1
-
1
)
4
y
2
-
y
1
BF的斜率k2=
y
2
x
2
-
1
要使點(diǎn)F在直線BD上
需k1=k2
需4(x2-1)=y2(y2-y1),
需4x2=
y
2
2
上式成立,∴k1=k2,
∴點(diǎn)F在直線BD上.
(Ⅱ)△BDK的內(nèi)切圓M的方程為(x-
1
9
4
9
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/8 8:0:10組卷:1868引用:19難度:0.5
相似題
-
1.點(diǎn)P在以F1,F(xiàn)2為焦點(diǎn)的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點(diǎn).E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過(guò)點(diǎn)P作直線分別與雙曲線漸近線相交于P1,P2兩點(diǎn),且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過(guò)點(diǎn)Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)M、N,且(λ為非零常數(shù)),問(wèn)在x軸上是否存在定點(diǎn)G,使MQ=λQN?若存在,求出所有這種定點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:72引用:5難度:0.7 -
2.已知兩個(gè)定點(diǎn)坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點(diǎn)任意一點(diǎn)到兩定點(diǎn)的距離之差的絕對(duì)值等于2
.5
(1)求曲線C的方程;
(2)過(guò)F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點(diǎn),求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:102引用:1難度:0.9 -
3.若過(guò)點(diǎn)(0,-1)的直線l與拋物線y2=2x有且只有一個(gè)交點(diǎn),則這樣的直線有( ?。l.
A.1 B.2 C.3 D.4 發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7
相關(guān)試卷