如圖1,等邊△ABC中,AD是BC邊上的中線,E為AD上一點(diǎn)(點(diǎn)E與點(diǎn)A不重合),以CE為一邊且在CE下方作等邊△CEF,連接BF.
(1)猜想線段AE,BF的數(shù)量關(guān)系:AE=BFAE=BF(不必證明);
(2)當(dāng)點(diǎn)E為AD延長(zhǎng)線上一點(diǎn)時(shí),其它條件不變.
①請(qǐng)你在圖2中補(bǔ)全圖形;
②(1)中結(jié)論成立嗎?若成立,請(qǐng)證明;若不成立請(qǐng)說(shuō)明理由.

【考點(diǎn)】三角形綜合題.
【答案】AE=BF
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:129引用:3難度:0.4
相似題
-
1.[觀察發(fā)現(xiàn)]
①如圖1,△ABC中,AB=7,AC=5,點(diǎn)D為BC的中點(diǎn),求AD的取值范圍.
小明的解法如下:延長(zhǎng)AD到點(diǎn)E,使DE=AD,連接CE,易證△ABD≌△ECD(SAS)可得AB=CE,在△AEC中根據(jù)三角形三邊關(guān)系可得2<AE<12,又∵AE=2AD,∴1<AD<6.
②如圖2,在△ABC中,若AB=AC,則∠B=∠C;若∠B=∠C,則AB=AC.
[應(yīng)用拓展]
如圖3,∠BCA=60°,∠AED=120°,CB=CA,EA=ED,連接CD,F(xiàn)為CD的中點(diǎn),連接FB、FE.求證:BF⊥EF.發(fā)布:2025/6/9 2:30:1組卷:109引用:2難度:0.3 -
2.已知,在平面直角坐標(biāo)系中,A(a,0),B(b,0)為x軸上兩點(diǎn),且a,b滿足:(a+3)2+(a+b)2=0,點(diǎn)C(0,
),∠ABC=30°,D為線段AB上一動(dòng)點(diǎn).3
(1)則a=,b=.
(2)如圖1,若點(diǎn)D在BC的垂直平分線上,作∠ADE=120°,交AC的延長(zhǎng)線于點(diǎn)E,連接BE,求證:BE⊥x軸;
(3)如圖2,作點(diǎn)D關(guān)于BC的對(duì)稱(chēng)點(diǎn)P,連接AP,取AP中點(diǎn)Q,連接CQ、CD,求CQ的最小值.發(fā)布:2025/6/9 2:0:7組卷:263引用:1難度:0.4 -
3.如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于N,交AC于M.
(1)若∠B=70°,則∠NMA的度數(shù)是 °.
(2)連接MB,若AB=8cm,△MBC的周長(zhǎng)是14cm.
①求BC的長(zhǎng);
②點(diǎn)Q是線段BC上的動(dòng)點(diǎn),在直線MN上是否存在點(diǎn)P,使由BP+PQ最小?若存在,求BP+PQ的最小值;若不存在,說(shuō)明理由.發(fā)布:2025/6/9 2:30:1組卷:27引用:1難度:0.3