如圖1.拋物線y=ax2+2x+c,交x軸于A、B兩點,交y軸于點C.當y≥0時-1≤x≤3.
(1)求拋物線的表達式;
(2)若點D是拋物線上第一象限的點.
①如圖1連接AD,交線段BC于點G,若DGAG=12時,求D點的坐標;
②如圖2,在①條件下,當點D靠近拋物線對稱軸時,過點D作DP⊥x軸,點H是DP上一點,連接AH,求AH+1010DH的最小值;
(3)如圖3,點D是拋物線上第一象限的點,F(xiàn)為拋物線頂點,直線EF垂直于x軸于點E,直線AD,BD分別與拋物線對稱軸交于M、N兩點試問,EM+EN是否為定值?如果是,請直接寫出這個定值:如果不是,請說明理由.
DG
AG
1
2
10
10
【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2+2x+3;(2)①點D的坐標為:(1,4)或(2,3);②;(3)EM+EN=8為定值.
6
10
5
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/5/23 7:30:1組卷:347引用:1難度:0.4
相似題
-
1.如圖,拋物線y=ax2+bx-4(a≠0)與x軸交于點A,點B,與y軸交于點C,其對稱軸為直線x=1.過點A的直線y=x+2與拋物線交于另一點E.
(1)該拋物線的解析式為 .
(2)點Q是x軸上的一動點,當△AQE為等腰三角形時,直接寫出Q點的坐標;
(3)點P是第四象限內(nèi)拋物線上的一個點,過點P作PH⊥AE于H.若PH取得最大值時,求這個最大值;
(4)M是拋物線對稱軸上一點,過M點作MN⊥y軸于點N.當EM+AN最短時,求點M的坐標.發(fā)布:2025/5/23 19:30:1組卷:254引用:4難度:0.2 -
2.在平面直角坐標系中,拋物線G:y=ax2+bx+1(a>0)經(jīng)過點A(2,1),頂點為點B.
(1)求a與b的數(shù)量關系;
(2)設拋物線G的對稱軸為直線l,過A作AM⊥l,垂足為M,且MB=2AM.
①當m-1≤x≤m+1時,求拋物線G的最高點的縱坐標(用含m的式子表示);
②平移拋物線G,當它與直線AB最多只有一個交點時,求平移的最短距離.發(fā)布:2025/5/23 19:30:1組卷:686引用:1難度:0.4 -
3.拋物線y=ax2-4經(jīng)過A、B兩點,且OA=OB,直線EC過點E(4,-1),C(0,-3),點D是線段OA(不含端點)上的動點,過D作PD⊥x軸交拋物線于點P,連接PC、PE.
(1)求拋物線與直線CE的解析式;
(2)求證:PC+PD為定值;
(3)在第四象限內(nèi)是否存在一點Q,使得以C、P、E、Q為頂點的平行四邊形面積最大,若存在,求出Q點坐標;若不存在,請說明理由.發(fā)布:2025/5/23 19:30:1組卷:154引用:1難度:0.4