圖形的旋轉變換是研究數學相關問題的重要手段之一,小華和小芳對等腰直角三角形的旋轉變換進行了研究.如圖(1),已知△ABC和△ADE均為等腰直角三角形,點D,E分別在線段AB,AC上,且∠C=∠AED=90°.

(1)觀察猜想
小華將△ADE繞點A逆時針旋轉,連接BD,CE,如圖(2),當BD的延長線恰好經過點E時:
①BDCE的值為 22;
②∠BEC的度數為 4545度.
(2)類比探究
如圖(3),小芳在小華的基礎上繼續旋轉△ADE,連接BD,CE,設BD的延長線交CE于點F,(1)中的兩個結論是否仍然成立?請說明理由;
(3)拓展延伸
若AE=DE=2,AC=BC=10,當CE所在的直線垂直于AD時,請你直接寫出BD的長.
BD
CE
2
2
AE
=
DE
=
2
AC
=
BC
=
10
【考點】相似形綜合題.
【答案】;45
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:396引用:3難度:0.3
相似題
-
1.我們可以通過面積運算的方法,得到等腰三角形底邊上的任意一點到兩腰的距離之和與一腰上的高之間的數量關系,并利用這個關系解決相關問題.
(1)如圖一,在等腰△ABC中,AB=AC,BC邊上有一點D,過點D作DE⊥AB于E,DF⊥AC于F,過點C作CG⊥AB于G.利用面積證明:DE+DF=CG.
(2)如圖二,將矩形ABCD沿著EF折疊,使點A與點C重合,點B落在B'處,點G為折痕EF上一點,過點G作GM⊥FC于M,GN⊥BC于N.若BC=8,BE=3,求GM+GN的長.
(3)如圖三,在四邊形ABCD中,E為線段BC上的一點,EA⊥AB,ED⊥CD,連接BD,且=ABCD,BC=AEDE,CD=3,BD=6,求ED+EA的長.51發布:2025/5/22 8:30:1組卷:1641引用:4難度:0.3 -
2.【學習心得】(1)請你完成下列證明:如圖①,△ABC和△ADE均為等邊三角形,點D在邊BC上,連接CE.求證:BD=CE;
【類比探究】(2)如圖②,△ABC和△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,點D在BC邊上.若BD=2,CD=3,則DE的長為 ;
【拓展延伸】(3)如圖③,在正方形ABCD中,對角線AC與BD交于點O,在Rt△PFE中,∠EPF=90°,點E、F分別在邊AB、BC上,點P在線段AC上.若,則PCAC=310=.PFPE發布:2025/5/22 7:30:2組卷:415引用:3難度:0.1 -
3.如圖,在矩形ABCD中,AB=10,BC=6,E是AD上一點,AE=2.F是AB上的動點,連接EF,G是EF上一點,且
為常數,k≠0).分別過點F、G作AB、EF的垂線相交于點P.設AF的長為x,PF的長為y.GFEF=k(k
(1)若,則y的值是 ;k=12,x=4
(2)求y與x之間的函數表達式;
(3)在點F從點A到點B的整個運動過程中,若線段CD上存在點P,則k的值應滿足什么條件?直接寫出k的取值范圍.發布:2025/5/22 8:30:1組卷:2225引用:1難度:0.3