試卷征集
          加入會員
          操作視頻

          已知a2-b2=8,且a-b=-4,則a+b=
          -2
          -2

          【考點】平方差公式
          【答案】-2
          【解答】
          【點評】
          聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
          發(fā)布:2025/6/11 2:0:7組卷:464引用:5難度:0.8
          相似題
          • 1.20202-2021×2019=

            發(fā)布:2025/6/12 15:0:5組卷:97引用:2難度:0.7
          • 2.閱讀下列材料,然后回答問題.
            學(xué)習(xí)了平方差公式后,老師展示了這樣一個例題:
            例求(2+1)(22+1)(24+1)(28+1)(216+1)+1值的末尾數(shù)字.
            解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)+1=(22-1)(22+1)(24+1)(28+1)(216+1)+1=(24-1)(24+1)(28+1)(216+1)+1=(28-1)(28+1)(216+1)+1=(216-1)(216+1)+1=232
            由2n(n為正整數(shù))的末尾數(shù)的規(guī)律,可得232末尾數(shù)字是6.
            愛動腦筋的小亮想到一種新的解法:因為22+1=5,而2+1,24+1,28+1,216+1均為奇數(shù),幾個奇數(shù)與5相乘,末尾數(shù)字是5,這樣原式的末尾數(shù)字是6.
            試解答以下問題:
            (1)求(2+1)(22+1)(23+1)(24+1)?…?(2n+1)+2的值的末尾數(shù)字;
            (2)計算:2(3+1)(32+1)(34+1)(38+1)(316+1)+1;(用含3的冪的形式表示計算結(jié)果)
            (3)直接寫出2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1的值的末尾數(shù)字.

            發(fā)布:2025/6/12 15:30:1組卷:353引用:3難度:0.7
          • 3.①計算:1122-113×111;
            ②已知m,n滿足m-n=4,mn=-3,求m2+n2的值.

            發(fā)布:2025/6/12 13:30:2組卷:50引用:1難度:0.6
          APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
          本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正