類比、轉化等數學思想方法,在數學學習和研究中經常用到,如下是一個案例,請補充完整.已知△ABC.
(1)觀察發現
如圖①,若點D是∠ABC 和∠ACB 的角平分線的交點,過點D作EF∥BC 分別交AB、AC于、E,F.填空:EF與BE、CF的數量關系是 EF=BE+CFEF=BE+CF.請說明理由.
(2)猜想論證
如圖②,若點D是外角∠CBE 和∠BCF 的角平分線的交點,其他條件不變,填:EF與BE、CF的數量關系是 EF=BE+CFEF=BE+CF.請說明理由.
(3)類比探究
如圖③,若點D是∠ABC 和外角∠ACG的角平分線的交點.其他條件不變,則(1)中的關系成立嗎?若成立,請加以證明;若不成立,請寫出關系式,再證明.
【考點】三角形綜合題.
【答案】EF=BE+CF;EF=BE+CF
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/29 8:0:10組卷:33引用:1難度:0.3
相似題
-
1.如圖1,在等腰直角三角形ABC中,∠BAC=90°,點E,F分別為AB,AC的中點,H為線段EF上一動點(不與點E,F重合),將線段AH繞點A逆時針方向旋轉90°得到AG,連接GC,HB.
(1)證明:△AHB≌△AGC;
(2)如圖2,連接GF,HG,HG交AF于點Q.
①證明:在點H的運動過程中,總有∠HFG=90°;
②若AB=AC=4,當EH的長度為多少時△AQG為等腰三角形?發布:2025/5/21 11:30:1組卷:1879引用:13難度:0.1 -
2.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現將三角板DFE繞點F順時針旋轉(當點D落在射線FB上時停止旋轉).
(1)當∠AFD=°時,DF∥AC;當∠AFD=°時,DF⊥AB;
(2)在旋轉過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內角相等,求∠APD的度數;
(3)當邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發布:2024/12/23 18:30:1組卷:1770引用:10難度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發,在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發,在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發,當其中一個點到達終點時,另一個點隨之停止運動,設運動時間為t(秒).
(1)當t=秒時,PQ平分線段BD;
(2)當t=秒時,PQ⊥x軸;
(3)當時,求t的值.∠PQC=12∠D發布:2024/12/23 15:0:1組卷:187引用:3難度:0.1