如圖1,拋物線L1:y=-x2+bx+c經過點A(1,0)和點B(5,0).已知直線l的解析式為y=kx-5.
(1)求拋物線L1的解析式;
(2)若直線l將線段AB分成1:3兩部分,求k的值;
(3)如圖2,當k=2時,直線與拋物線交于M,N兩點,點P是拋物線位于直線l上方的一點,當△PMN面積最
大時,求P點坐標,并求面積的最大值;
(4)如圖3,將拋物線L2在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L2.
①直接寫出y隨x的增大而增大時x的取值范圍 x≤1或3≤x≤5x≤1或3≤x≤5;
②直接寫出直線l與圖象L2有四個交點時k的取值范圍 210-6<k<1210-6<k<1.

10
10
【考點】二次函數綜合題.
【答案】x≤1或3≤x≤5;2-6<k<1
10
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:292引用:4難度:0.2
相似題
-
1.如圖,對稱軸為直線x=1的拋物線y=x2-bx+c與x軸交于A、B兩點,與y軸交于C點,且OB=OC.
(1)求拋物線的解析式;
(2)拋物線頂點為D,直線BD交y軸于E點;
①設點P為線段BD上一點(點P不與B、D兩點重合),過點P作x軸的垂線與拋物線交于點F,求△BDF面積的最大值;
②在線段BD上是否存在點Q,使得∠BDC=∠QCE?若存在,求出點Q的坐標;若不存在,請說明理由.發布:2025/5/24 9:30:2組卷:191引用:2難度:0.1 -
2.如圖,二次函數
與x軸交于O(0,0),A(4,0)兩點,頂點為C,連接OC、AC,若點B是線段OA上一動點,連接BC,將△ABC沿BC折疊后,點A落在點A'的位置,線段A'C與x軸交于點D,且點D與O、A點不重合.y=12x2+bx+c
(1)求二次函數的表達式;
(2)①求證:△OCD∽△A'BD;
②求的最小值.DBBA發布:2025/5/24 9:30:2組卷:300引用:2難度:0.1 -
3.在平面直角坐標系中,O為坐標原點,拋物線y=ax2+2ax+c與x軸交于點A,B,與y軸交于點C,點A的坐標為(2,0),點
在拋物線上.D(-3,52)
(1)求拋物線的表達式;
(2)如圖①,點P在y軸上,且點P在點C的下方,若∠PDC=45°,求點P的坐標;
(3)如圖②,E為線段CD上的動點,射線OE與線段AD交于點M,與拋物線交于點N,求的最大值.MNOM發布:2025/5/24 9:30:2組卷:1691引用:11難度:0.1