綜合與實踐
問題情境:數學活動課上,周老師出示了一個問題,如圖1,在△ABC中,AB=AC,點D在BC邊上,過C作CE⊥AD于E,且 ∠ACE=12∠BAC,求證:∠DAC=∠ACB.
獨立思考:(1)請解答周老師提出的問題.
實踐探究:(2)在原有問題條件不變的情況下,周老師增加下面的條件,并提出新的問題,請你解答.
“如圖2,延長CB至點K,使BK=2BD,連接AK,延長CE交AB于點G,交AK于點F,若DK=2AE,求證BK=AD.”
問題解決:(3)數學活動小組同學對上述問題進行深入研究之后發現,若給出線段DE的長,則圖中所有已經用字母標記的線段長均可求,該小組提出下面的問題,請你解答.
“在(2)的條件下,若DE=2,求AF的長.”

∠
ACE
=
1
2
∠
BAC
【考點】三角形綜合題.
【答案】(1)(2)證明見解析部分;
(3).
(3)
96
11
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:521引用:1難度:0.1
相似題
-
1.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,動點P從點A出發沿線段AB以每秒3個單位長的速度運動至點B,過點P作PQ⊥AB交射線AC于點Q,設點P的運動時間為t秒(t>0).
(1)線段AQ的長為 ,線段PQ的長為 .(用含t的代數式表示)
(2)當△APQ與△ABC的周長的比為1:4時,求t的值.
(3)設△APQ與△ABC重疊部分圖形的面積為S,求S與t之間的函數關系式.發布:2025/6/25 4:0:1組卷:19引用:1難度:0.3 -
2.已知等腰直角△ABC的直角邊AB=BC=10cm,點P,Q分別從A.C兩點同時出發,均以1cm/s的相同速度做直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設P點運動時間為t,△PCQ的面積為S.
(1)求出S關于t的函數關系式.
(2)當點P在線段AB上時,點P運動幾秒時,S△PCQ=S△ABC?14
(3)作PE⊥AC于點E,當點P.Q運動時,線段DE的長度是否改變?證明你的結論.發布:2025/6/23 23:0:10組卷:243引用:1難度:0.1 -
3.如圖,在△ABC中,BC=5,AD⊥BC,BE⊥AC,AD,BE相交于點O,BD:CD=2:3,且AE=BE.
(1)求線段AO的長;
(2)動點P從點O出發,沿線段OA以每秒1個單位長度的速度向終點A運動,動點Q從點B出發沿射線BC以每秒4個單位長度的速度運動.P,Q兩點同時出發,當點P到達A點時,P,Q兩點同時停止運動.設點P的運動時間為t秒,△AOQ的面積為S,請用含t的式子表示S,并直接寫出相應的t的取值范圍;
(3)在(2)的條件下,點F是直線AC上的一點,且CF=BO,是否存在t值,使以點B,O,P為頂點的三角形與以點F,C,Q為頂點的三角形全等?若存在,請直接寫出符合條件的t值;若不存在,請說明理由.發布:2025/6/25 5:0:1組卷:191引用:3難度:0.4