如圖是一個“趙爽弦圖”,它是由四個全等的直角三角形圍成一個大正方形,中空的部分也是一個小正方形,若大正方形的邊長為7,小正方形的邊長為3,直角三角形的兩直角邊分別為a,b,則ab的值為 2020.
【考點】勾股定理的證明.
【答案】20
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/6/7 11:0:1組卷:255引用:5難度:0.7
相似題
-
1.勾股定理在平面幾何中有著不可替代的重要地位,在我國古算書《周髀算經》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長均為1的小正方形和Rt△ABC構成的,可以用其面積關系驗證勾股定理.將圖1按圖2所示“嵌入”長方形LMJK,則該長方形的面積為( )
A.120 B.110 C.100 D.90 發布:2025/6/8 3:0:2組卷:1952引用:7難度:0.5 -
2.綜合與實踐:
問題情境
學過幾何的人都知道勾股定理,它是幾何中一個比較重要的定理,應用十分廣泛.迄今為止,關于勾股定理的證明方法已有400多種.在學習了《勾股定理》和《實數》后,某班同學以“已知三角形三邊的長度,求三角形面積”為主題開展了數學活動.
操作發現
如圖1是6×6的正方形網格,每個小正方形的邊長均為1,每個小正方形的頂點稱為格點.在圖1中畫出△ABC,其頂點A,B,C都是格點,同時構造正方形BDEF,使它的頂點都在格點上,且它的邊DE,EF分別經過點C,A,他們借助此圖求出了△ABC的面積.
(1)在圖1中,所畫出的△ABC的三邊長分別是AB=,BC=,AC=;△ABC的面積為 .
實踐探究
(2)在圖2所示的正方形網格中畫出△DEF(頂點都在格點上),使DE=,DF=5,EF=13,并寫出△DEF的面積.20
繼續探究
(3)若△ABC中有兩邊的長分別為a,2a(a>0),且△ABC的面積為2a2,試運用構圖法在圖3的正方形網格(每個小正方形的邊長為a)中畫出所有符合題意的△ABC(全等的三角形視為同一種情況),并求出它的第三條邊長填寫在橫線上 .10發布:2025/6/7 8:0:1組卷:1062引用:7難度:0.4 -
3.如圖,“趙爽弦圖”是由四個全等的直角三角形與一個小正方形拼成大正方形,若小正方形邊長為1,大正方形邊長為5,則一個直角三角形的周長是( )
A.6 B.7 C.12 D.15 發布:2025/6/8 2:0:5組卷:1587難度:0.5