如圖①,已知拋物線y=ax2+bx+c頂點坐標為(-1,154),交y軸于點A(0,3),交直線l:x=-2于點B,點C(0,2)在y軸上,連接BC并延長,交拋物線于點D.
(1)求拋物線解析式;
(2)如圖①,E為直線l上位于點B下方一動點,連DE、BD、AD,若S△BDE=4S△ABD,求E點坐標;
(3)如圖②,在(2)的條件下,P為射線EB上一點,作PQ⊥直線DE于點Q,若△APQ為直角三角形,請求出P點坐標.

15
4
【考點】二次函數綜合題.
【答案】(1)y=x2x+3;
(2)(-2,-1);
(3)(-2,1)或(-2,3)或(-2,9).
-
3
4
-
3
2
(2)(-2,-1);
(3)(-2,1)或(-2,3)或(-2,9).
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:1379引用:6難度:0.2
相似題
-
1.在平面直角坐標系xOy中,二次函數y=ax2+bx+4(a<0)的圖象與x軸交于點A(-2,0)和點B(4,0),與y軸交于點C,直線BC與對稱軸于點D.
(1)求二次函數的解析式.
(2)若拋物線y=ax2+bx+4(a<0)的對稱軸上有一點M,以O、C、D、M四點為頂點的四邊形是平行四邊形時,求點M的坐標.
(3)將拋物線y=ax2+bx+4(a<0)向右平移2個單位得到新拋物線,新拋物線與原拋物線交于點E,點F是新拋物線的對稱軸上的一點,點G是坐標平面內一點,當以D、E、F、G四點為頂點的四邊形是菱形時,求點F的坐標.發布:2025/5/23 23:30:1組卷:634引用:3難度:0.3 -
2.如圖,拋物線y=ax2+bx+c與x軸交于A(
,0),B兩點(點B在點A的左側),與y軸交于點C,且OB=3OA=3OC,∠OAC的平分線AD交y軸于點D,過點A且垂直于AD的直線l交y軸于點E,點P是x軸下方拋物線上的一個動點,過點P作PF⊥x軸,垂足為F,交直線AD于點H.3
(1)求拋物線的解析式;
(2)設點P的橫坐標為m,當FH=HP時,求m的值;
(3)當直線PF為拋物線的對稱軸時,以點H為圓心,HC為半徑作⊙H,點Q為⊙H上的一個動點,求12AQ+EQ的最小值.14發布:2025/5/24 0:0:1組卷:3204引用:2難度:0.3 -
3.如圖,是某水上樂園為親子游樂區新設滑梯的示意圖,其中線段PA是豎直高度為6米的平臺,PO垂直于水平面,滑道分為兩部分,其中AB段是雙曲線y=
的一部分,BCD段是拋物線的一部分,兩滑道的連接點B為拋物線的頂點,且B點的豎直高度為2米,滑道與水平面的交點D距PO的水平距離為7米,以點O為坐標原點建立平面直角坐標系,滑道上點的豎直高度為y,距直線PO的水平距離為x.10x
(1)請求出滑道BCD段y與x之間的函數關系式;
(2)當滑行者滑到C點時,距地面的距離為1米,求滑行者此時距滑道起點A的水平距離;
(3)在建模實驗中發現,為保證滑行者的安全,滑道BCD落地點D與最高點B連線與水平面夾角應不大于45°,且由于實際場地限制,≥OPOD,求OD長度的取值范圍.12發布:2025/5/23 23:0:1組卷:271引用:2難度:0.2