如圖,是某水上樂園為親子游樂區新設滑梯的示意圖,其中線段PA是豎直高度為6米的平臺,PO垂直于水平面,滑道分為兩部分,其中AB段是雙曲線y=10x的一部分,BCD段是拋物線的一部分,兩滑道的連接點B為拋物線的頂點,且B點的豎直高度為2米,滑道與水平面的交點D距PO的水平距離為7米,以點O為坐標原點建立平面直角坐標系,滑道上點的豎直高度為y,距直線PO的水平距離為x.
(1)請求出滑道BCD段y與x之間的函數關系式;
(2)當滑行者滑到C點時,距地面的距離為1米,求滑行者此時距滑道起點A的水平距離;
(3)在建模實驗中發現,為保證滑行者的安全,滑道BCD落地點D與最高點B連線與水平面夾角應不大于45°,且由于實際場地限制,OPOD≥12,求OD長度的取值范圍.
10
x
OP
OD
1
2
【考點】二次函數綜合題.
【答案】(1)滑道BCD段y與x之間函數關系式為y=-(x-5)2+2;(2)滑行者距滑道起點的水平距離為(+)米;(3)OD長度的取值范圍為7≤OD≤12.
1
2
10
3
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/23 23:0:1組卷:271引用:2難度:0.2
相似題
-
1.如圖,在平面直角坐標系中,拋物線y=ax2+bx+3與x軸交于A,B兩點,與y軸交于C點,連接BC.P是直線BC上方拋物線上一動點,連接PA,交BC于點D.其中BC=AB,tan∠ABC=
.34
(1)求拋物線的解析式;
(2)求的最大值;PDDA
(3)若函數y=ax2+bx+3在(其中m-12≤x≤m+12)范圍內的最大值為s,最小值為t,且m≤56≤s-t<12,求m的取值范圍.32發布:2025/5/24 6:0:2組卷:213引用:1難度:0.1 -
2.如圖,在平面直角坐標系中,二次函數y=ax2+bx+c的圖象交x軸于A、B兩點,交y軸于C點,P為y軸上的一個動點,已知A(-2,0)、C(0,-2
),且拋物線的對稱軸是直線x=1.3
(1)求此二次函數的解析式;
(2)連接PB,則PC+PB的最小值是;12
(3)連接PA、PB,P點運動到何處時,使得∠APB=60°,請求出P點坐標.發布:2025/5/24 5:0:1組卷:1948引用:7難度:0.2 -
3.如圖,在平面直角坐標系中,拋物線y=x2+bx+c經過點A(-1,0),B(
,0),直線y=x+52與拋物線交于C,D兩點,點P是拋物線在第四象限內圖象上的一個動點.過點P作PG⊥CD,垂足為G,PQ∥y軸,交x軸于點Q.12
(1)求拋物線的函數表達式;
(2)當PG+PQ取得最大值時,求點P的坐標和2PG+PQ的最大值;2
(3)將拋物線向右平移個單位得到新拋物線,M為新拋物線對稱軸上的一點,點N是平面內一點.當(2)中134PG+PQ最大時,直接寫出所有使得以點A,P,M,N為頂點的四邊形是菱形的點N的坐標,并把求其中一個點N的坐標的過程寫出來.2發布:2025/5/24 5:0:1組卷:1765引用:4難度:0.3