試卷征集
          加入會(huì)員
          操作視頻

          【經(jīng)典回顧】
          梅文鼎是我國(guó)清初著名的數(shù)學(xué)家,他在《勾股舉隅》中給出多種證明勾股定理的方法圖1是其中一種方法的示意圖及部分輔助線.

          在△ABC中,∠ACB=90°,四邊形ADEB、ACHI和BFGC分別是以Rt△ABC的三邊為一邊的正方形.延長(zhǎng)IH和FG,交于點(diǎn)L,連接LC并延長(zhǎng)交DE于點(diǎn)J,交AB于點(diǎn)K,延長(zhǎng)DA交IL于點(diǎn)M.
          (1)證明:AD=LC;
          (2)證明:正方形ACHI的面積等于四邊形ACLM的面積;
          (3)請(qǐng)利用(2)中的結(jié)論證明勾股定理.
          (4)【遷移拓展】
          如圖2,四邊形ACHI和BFGC分別是以△ABC的兩邊為一邊的平行四邊形,探索在AB下方是否存在平行四邊形ADEB,使得該平行四邊形的面積等于平行四邊形ACHI、BFGC的面積之和.若存在,作出滿足條件的平行四邊形ADEB(保留適當(dāng)?shù)淖鲌D痕跡);若不存在,請(qǐng)說(shuō)明理由.

          【考點(diǎn)】四邊形綜合題
          【答案】(1)見(jiàn)解析;
          (2)見(jiàn)解析;
          (3)見(jiàn)解析;
          (4)存在,見(jiàn)解析.
          【解答】
          【點(diǎn)評(píng)】
          聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
          發(fā)布:2024/6/27 10:35:59組卷:155引用:3難度:0.1
          相似題
          • 1.(1)如圖1,在四邊形ABCD中,∠ABC=∠ADC=90°,AD=CD,對(duì)角線BD=8,求四邊形ABCD的面積;
            (2)如圖2,園藝設(shè)計(jì)師想在正六邊形草坪一角∠BOC內(nèi)改建一個(gè)小型的兒童游樂(lè)場(chǎng)OMAN.其中OA平分∠BOC,OA=100米,∠BOC=120°,點(diǎn)M,N分別在射線OB和OC上,且∠MAN=90°,為了盡可能的少破壞草坪,要使游樂(lè)場(chǎng)OMAN面積最小,你認(rèn)為園林規(guī)劃局的想法能實(shí)現(xiàn)嗎?若能,請(qǐng)求出游樂(lè)場(chǎng)OMAN面積的最小值;若不能,請(qǐng)說(shuō)明理由.

            發(fā)布:2025/6/9 15:0:1組卷:243引用:2難度:0.2
          • 2.如圖,在Rt△ABC中,AC=BC=4,∠ACB=90°,正方形BDEF的邊長(zhǎng)為2,將正方形BDEF繞點(diǎn)B旋轉(zhuǎn)一周,連接AE、BE、CD.
            (1)請(qǐng)判斷線段AE和CD的數(shù)量關(guān)系,并說(shuō)明理由;
            (2)當(dāng)A、E、F三點(diǎn)在同一直線上時(shí),求CD的長(zhǎng);
            (3)設(shè)AE的中點(diǎn)為M,連接FM,試求線段FM長(zhǎng)的取值范圍.

            發(fā)布:2025/6/9 15:0:1組卷:209引用:1難度:0.1
          • 3.[閱讀理解]
            “倍長(zhǎng)中線”是初中數(shù)學(xué)一種重要的思想方法.如圖1,在△ABC中,AD是BC邊上的中線,若延長(zhǎng)AD至E,使DE=AD,連接CE,可根據(jù)SAB證明△ABD≌△ECD,則AB=EC.

            [問(wèn)題提出]
            (1)如圖2,平行四邊形ABCD中,點(diǎn)E為CD邊的中點(diǎn),在BC邊上找一點(diǎn)F,使得AF=AD+CF(要求:用直尺和圓規(guī)作圖,保留作圖痕跡,不寫作法).
            (2)按照你(1)中的作圖過(guò)程證明:AF=AD+CF.

            發(fā)布:2025/6/9 15:30:2組卷:265引用:3難度:0.1
          APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
          本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正