試卷征集
          加入會(huì)員
          操作視頻

          問(wèn)題探究
          (1)如圖①,⊙O的半徑為10,弦AB=16,則圓心O到AB的距離為
          6
          6
          ;
          (2)如圖②,線段BC和動(dòng)點(diǎn)A構(gòu)成△ABC,已知BC=9,∠BAC=60°,過(guò)點(diǎn)A作BC邊上的高線AD.若點(diǎn)D在線段BC上,求線段AD長(zhǎng)度的最小值;
          問(wèn)題解決
          (3)周老師為了增加數(shù)學(xué)學(xué)習(xí)的趣味性,設(shè)計(jì)了一個(gè)“尋寶”游戲:如圖③,在平面內(nèi),線段AB長(zhǎng)為9cm,線段AB外有一動(dòng)點(diǎn)P,且線段PA長(zhǎng)為7cm,又有一點(diǎn)Q滿足PB=BQ,且∠PBQ=90°,當(dāng)線段AQ的長(zhǎng)度最大時(shí),點(diǎn)Q的位置即為藏寶地.請(qǐng)你確定藏寶地的位置及此時(shí)藏寶地到點(diǎn)A的距離.

          【考點(diǎn)】圓的綜合題
          【答案】6
          【解答】
          【點(diǎn)評(píng)】
          聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
          發(fā)布:2024/5/23 20:19:40組卷:110引用:1難度:0.3
          相似題
          • 1.【問(wèn)題呈現(xiàn)】阿基米德折弦定理:阿基米德(archimedes,公元前287-公元前212年,古希臘)是有史以來(lái)最偉大的數(shù)學(xué)家之一,他與牛頓、高斯并稱為三大數(shù)學(xué)王子.如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,點(diǎn)M是
            ?
            ABC
            的中點(diǎn),則從M向BC所作垂線的垂足D是折弦ABC的中點(diǎn),即CD=DB+BA.下面是運(yùn)用“截長(zhǎng)法”證明CD=DB+BA的部分證明過(guò)程.
            證明:如圖2,在CD上截取CG=AB,連接MA、MB、MC和MG.
            ∵M(jìn)是
            ?
            ABC
            的中點(diǎn),
            ∴MA=MC,
            又∵∠A=∠C,BA=GC,
            ∴△MAB≌△MCG,
            ∴MB=MG,
            又∵M(jìn)D⊥BC,
            ∴BD=DG,
            ∴AB+BD=CG+DG即CD=DB+BA.
            【理解運(yùn)用】如圖1,AB、BC是⊙O的兩條弦,AB=4,BC=6,點(diǎn)M是
            ?
            ABC
            的中點(diǎn),MD⊥BC于點(diǎn)D,則BD=

            【變式探究】如圖3,若點(diǎn)M是
            ?
            AC
            的中點(diǎn),【問(wèn)題呈現(xiàn)】中的其他條件不變,判斷CD、DB、BA之間存在怎樣的數(shù)量關(guān)系?并加以證明.
            【實(shí)踐應(yīng)用】如圖4,BC是⊙O的直徑,點(diǎn)A圓上一定點(diǎn),點(diǎn)D圓上一動(dòng)點(diǎn),且滿足∠DAC=45°,若AB=6,⊙O的半徑為5,則AD=

            發(fā)布:2025/5/24 15:30:1組卷:1264引用:8難度:0.2
          • 2.已知AP=d是半圓O的直徑,點(diǎn)C是半圓O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、P重合),聯(lián)結(jié)AC,以直線AC為對(duì)稱軸翻折AO,將點(diǎn)O的對(duì)稱點(diǎn)記為O1,射線AO1交半圓O于點(diǎn)B,連接OC.

            (1)如圖1,推斷AB和OC位置關(guān)系;
            (2)如圖2,當(dāng)點(diǎn)B與點(diǎn)O1重合時(shí),用d表示弧PC的長(zhǎng);
            (3)過(guò)點(diǎn)C作射線AO1的垂線,垂足為E,連接OE交AC于F.當(dāng)d=10,O1B=1時(shí),求
            CF
            AF
            的值.

            發(fā)布:2025/5/24 15:30:1組卷:57引用:1難度:0.3
          • 3.微探究:如圖①,點(diǎn)P在⊙O上,利用直尺(沒(méi)有刻度)和圓規(guī)過(guò)點(diǎn)P作⊙O的切線.小明所在的數(shù)學(xué)小組經(jīng)過(guò)合作探究,發(fā)現(xiàn)了很多作法,精彩紛呈.
            作法一:
            ①作直徑PA的垂直平分線交⊙O于點(diǎn)B;
            ②分別以點(diǎn)B、P為圓心,OP為半徑作弧,兩弧交于點(diǎn)C;
            ③作直線PC.

            作法二:
            ①作直徑PA的四等分點(diǎn)B、C;
            ②以點(diǎn)A為圓心,CA為半徑作弧,交射線PA于點(diǎn)D;
            ③分別以點(diǎn)A、P為圓心,PD、PC為半徑作弧,兩弧交于點(diǎn)E;
            ④作直線PE.

            (1)以上作法是否正確?選一個(gè)你認(rèn)為正確的作法予以證明;
            (2)在圖①、圖②中用兩種作法作出符合條件的圖形(與以上作法不同).不寫作法,保留作圖痕跡.

            發(fā)布:2025/5/24 16:0:1組卷:115引用:1難度:0.1
          APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
          本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正