問(wèn)題探究
(1)如圖①,⊙O的半徑為10,弦AB=16,則圓心O到AB的距離為66;
(2)如圖②,線段BC和動(dòng)點(diǎn)A構(gòu)成△ABC,已知BC=9,∠BAC=60°,過(guò)點(diǎn)A作BC邊上的高線AD.若點(diǎn)D在線段BC上,求線段AD長(zhǎng)度的最小值;
問(wèn)題解決
(3)周老師為了增加數(shù)學(xué)學(xué)習(xí)的趣味性,設(shè)計(jì)了一個(gè)“尋寶”游戲:如圖③,在平面內(nèi),線段AB長(zhǎng)為9cm,線段AB外有一動(dòng)點(diǎn)P,且線段PA長(zhǎng)為7cm,又有一點(diǎn)Q滿足PB=BQ,且∠PBQ=90°,當(dāng)線段AQ的長(zhǎng)度最大時(shí),點(diǎn)Q的位置即為藏寶地.請(qǐng)你確定藏寶地的位置及此時(shí)藏寶地到點(diǎn)A的距離.

【考點(diǎn)】圓的綜合題.
【答案】6
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/23 20:19:40組卷:110引用:1難度:0.3
相似題
-
1.【問(wèn)題呈現(xiàn)】阿基米德折弦定理:阿基米德(archimedes,公元前287-公元前212年,古希臘)是有史以來(lái)最偉大的數(shù)學(xué)家之一,他與牛頓、高斯并稱為三大數(shù)學(xué)王子.如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,點(diǎn)M是
的中點(diǎn),則從M向BC所作垂線的垂足D是折弦ABC的中點(diǎn),即CD=DB+BA.下面是運(yùn)用“截長(zhǎng)法”證明CD=DB+BA的部分證明過(guò)程.?ABC
證明:如圖2,在CD上截取CG=AB,連接MA、MB、MC和MG.
∵M(jìn)是的中點(diǎn),?ABC
∴MA=MC,
又∵∠A=∠C,BA=GC,
∴△MAB≌△MCG,
∴MB=MG,
又∵M(jìn)D⊥BC,
∴BD=DG,
∴AB+BD=CG+DG即CD=DB+BA.
【理解運(yùn)用】如圖1,AB、BC是⊙O的兩條弦,AB=4,BC=6,點(diǎn)M是的中點(diǎn),MD⊥BC于點(diǎn)D,則BD=;?ABC
【變式探究】如圖3,若點(diǎn)M是的中點(diǎn),【問(wèn)題呈現(xiàn)】中的其他條件不變,判斷CD、DB、BA之間存在怎樣的數(shù)量關(guān)系?并加以證明.?AC
【實(shí)踐應(yīng)用】如圖4,BC是⊙O的直徑,點(diǎn)A圓上一定點(diǎn),點(diǎn)D圓上一動(dòng)點(diǎn),且滿足∠DAC=45°,若AB=6,⊙O的半徑為5,則AD=.發(fā)布:2025/5/24 15:30:1組卷:1264引用:8難度:0.2 -
2.已知AP=d是半圓O的直徑,點(diǎn)C是半圓O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、P重合),聯(lián)結(jié)AC,以直線AC為對(duì)稱軸翻折AO,將點(diǎn)O的對(duì)稱點(diǎn)記為O1,射線AO1交半圓O于點(diǎn)B,連接OC.
(1)如圖1,推斷AB和OC位置關(guān)系;
(2)如圖2,當(dāng)點(diǎn)B與點(diǎn)O1重合時(shí),用d表示弧PC的長(zhǎng);
(3)過(guò)點(diǎn)C作射線AO1的垂線,垂足為E,連接OE交AC于F.當(dāng)d=10,O1B=1時(shí),求的值.CFAF發(fā)布:2025/5/24 15:30:1組卷:57引用:1難度:0.3 -
3.微探究:如圖①,點(diǎn)P在⊙O上,利用直尺(沒(méi)有刻度)和圓規(guī)過(guò)點(diǎn)P作⊙O的切線.小明所在的數(shù)學(xué)小組經(jīng)過(guò)合作探究,發(fā)現(xiàn)了很多作法,精彩紛呈.
作法一:
①作直徑PA的垂直平分線交⊙O于點(diǎn)B;
②分別以點(diǎn)B、P為圓心,OP為半徑作弧,兩弧交于點(diǎn)C;
③作直線PC.
作法二:
①作直徑PA的四等分點(diǎn)B、C;
②以點(diǎn)A為圓心,CA為半徑作弧,交射線PA于點(diǎn)D;
③分別以點(diǎn)A、P為圓心,PD、PC為半徑作弧,兩弧交于點(diǎn)E;
④作直線PE.
(1)以上作法是否正確?選一個(gè)你認(rèn)為正確的作法予以證明;
(2)在圖①、圖②中用兩種作法作出符合條件的圖形(與以上作法不同).不寫作法,保留作圖痕跡.發(fā)布:2025/5/24 16:0:1組卷:115引用:1難度:0.1