試卷征集
          加入會員
          操作視頻

          (1)問題發(fā)現(xiàn)
          如圖1,在△ABC中,AB=AC,D是線段BC上一動點,以AD為一條邊在ADA的左側(cè)作△ADE,使AD=AE,∠EAD=∠BAC,連接BE.則∠ABE與∠C的數(shù)量關(guān)系為
          ∠ABE=∠C
          ∠ABE=∠C

          (2)類比探究
          如圖2,在△ABC中,D是線段BC上一動點,以AD為一條邊在AD的左側(cè)作△ADE,使
          AE
          AD
          =
          AB
          AC
          且∠EAD=∠BAC,連接BE.則(1)中∠ABE與∠C的數(shù)量關(guān)系仍然成立嗎?請說明理由.
          (3)拓展應(yīng)用
          如圖3,在(2)的條件下,若∠C=30°,AB=6,當(dāng)AE取最小值時,△ABE的面積為
          9
          3
          2
          9
          3
          2

          【考點】三角形綜合題
          【答案】∠ABE=∠C;
          9
          3
          2
          【解答】
          【點評】
          聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
          發(fā)布:2024/6/27 10:35:59組卷:79引用:2難度:0.3
          相似題
          • 1.如圖1,△ABC和△CDE都是等邊三角形,且A,C,E在同一條直線上,分別連接AD,BE.
            (1)求證:AD=BE;
            (2)如圖2,連接BD,若M,N,Q分別為AB,DE,BD的中點,過N作NP⊥MN與MQ的延長線交于P,求證:MP=AD;
            (3)如圖3,設(shè)AD與BE交于F點,點M在AB上,MG∥AD,交BE于H,交CF的延長線于G,試判斷△FGH的形狀.

            發(fā)布:2025/5/24 17:0:2組卷:45引用:1難度:0.1
          • 2.仔細閱讀以下內(nèi)容解決問題:第24屆國際數(shù)學(xué)家大會會標(biāo),設(shè)兩條直角邊的邊長為a,b,則面積為
            1
            2
            ab,四個直角三角形面積和小于正方形的面積得:a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時取等號.在a2+b2≥2ab中,若a>0,b>0,用
            a
            、
            b
            代替a,b得,a+b≥2
            ab
            ,即
            a
            +
            b
            2
            ab
            (*),我們把(*)式稱為基本不等式.利用基本不等式我們可以求這個式子的最大最小值.我們以“已知x為實數(shù),求y=
            x
            2
            +
            4
            x
            2
            +
            1
            的最小值”為例給同學(xué)們介紹.
            解:由題知y=
            x
            2
            +
            1
            +
            3
            x
            2
            +
            1
            =
            x
            2
            +
            1
            +
            3
            x
            2
            +
            1
            ,
            x
            2
            +
            1
            >0,
            3
            x
            2
            +
            1
            >0,
            ∴y=
            x
            2
            +
            1
            +
            3
            x
            2
            +
            1
            2
            x
            2
            +
            1
            ?
            3
            x
            2
            +
            1
            =
            2
            3
            ,當(dāng)且僅當(dāng)
            x
            2
            +
            1
            =
            3
            x
            2
            +
            1
            時取等號,即當(dāng)x=
            2
            時,函數(shù)的最小值為2
            3

            總結(jié):利用基本不等式
            a
            +
            b
            2
            ab
            (a>0,b>0)求最值,若ab為定值.則a+b有最小值.
            請同學(xué)們根據(jù)以上所學(xué)的知識求下列函數(shù)的最值,并求出取得最值時相應(yīng)x的取值.
            (1)若x>0,求y=2x+
            2
            x
            的最小值;
            (2)若x>2,求y=x+
            1
            x
            -
            2
            的最小值;
            (3)若x≥0,求y=
            x
            +
            4
            x
            +
            13
            x
            +
            2
            的最小值.

            發(fā)布:2025/5/24 19:30:1組卷:236引用:3難度:0.5
          • 3.問題情景:已知在△ABC中,AB=AC,∠BAC=α,過點A作AD⊥BC于點D,點P為直線BC上一點(不與點B、C重合),過點P作PM⊥AB于點M,PN⊥AC于點N.
            (1)觀察猜想
            如圖1,若α=60°,P在線段BC上時,線段PM、PN、AD的數(shù)量關(guān)系是

            (2)類比探究
            如圖2,若α=90°,P在線段BC上時,判斷線段PM、PN、AD的數(shù)量關(guān)系,并說明理由.
            (3)問題解決
            若α=120°,點P在線段BC兩端點的外端,且AD=2,請直接寫出PM-PN的值.

            發(fā)布:2025/5/24 20:0:2組卷:74引用:1難度:0.3
          APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
          本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正