在平面直角坐標系xOy中,給出如下定義:對于⊙C及⊙C外一點P,M,N是⊙C上兩點,當∠MPN最大,稱∠MPN為點P關于⊙C的“視角”.直線l與⊙C相離,點Q在直線l上運動,當點Q關于⊙C的“視角”最大時,則稱這個最大的“視角”為直線l關于⊙C的“視角”.
(1)如圖,⊙O的半徑為1,
①已知點A(1,1),直接寫出點A關于⊙O的“視角”大小;已知直線y=2,直接寫出直線y=2關于⊙O的“視角”;
②若點B關于⊙O的“視角”為60°,直接寫出一個符合條件的B點坐標;
(2)⊙C的半徑為1,
①點C的坐標為(1,2),直線l:y=kx+b(k>0)經過點D(-23+1,0),若直線l關于⊙C的“視角”為60°,求k的值;
②圓心C在x軸正半軸上運動,若直線y=3x+3關于⊙C的“視角”大于120°,直接寫出圓心C的橫坐標xC的取值范圍.

3
3
3
【考點】圓的綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/9/12 9:0:8組卷:603引用:4難度:0.3
相似題
-
1.小亮學習了圓周角定理的推論“圓內接四邊形對角互補”后,勇于思考大膽創新,并結合三角形的角平分線的性質進行了以下思考和發現:
(1)①如圖1,四邊形ABCD是⊙O的內接四邊形,若∠B=85°,則∠ADE=;
②如圖2,在△ABC中,BE,CE分別平分∠ABC和∠ACD,BE,CE相交于點E,∠A=42°,則∠E=°;
(2)小亮根據這個發現,又進行了以下深入研究:
如圖3,四邊形ABCD內接于⊙O,對角線BD是⊙O的直徑,AC=BC,點F是弧AD的中點,求∠E的度數[(1)中的結論可直接用].發布:2025/5/24 19:30:1組卷:127引用:1難度:0.4 -
2.如圖1,在等腰△ABC中,AB=AC,AO平分∠BAC且交BC于點O,AB與⊙O相切于點D,OC交⊙O于點H,連接OD.
(1)求證:AC是⊙O的切線;
(2)延長DO、AC交于點E,若CE=OC,求證:OA=OE;
(3)在(2)的條件下,連接DH交AO于點K,若OK?AK=8-12,求⊙O的半徑并直接寫出DK?HK的值.3發布:2025/5/24 19:30:1組卷:184引用:1難度:0.1 -
3.如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作DF⊥AC,垂足為點F.
(1)求證:直線DF是⊙O的切線;
(2)求證:BC2=4CF?AC;
(3)若⊙O的半徑為4,∠CDF=15°,求陰影部分的面積.發布:2025/5/24 21:0:1組卷:2988引用:17難度:0.5