試卷征集
          加入會員
          操作視頻

          如圖,在?ABCD中,AB=15,BC=27,AE⊥BC于點E,且BE=9.點P從點B出發(fā),沿BC以每秒3個單位長度的速度向終點C運動;點Q從點D出發(fā),沿DA以每秒2個單位長度的速度向終點A運動,P、Q兩點同時出發(fā),當點P停止時,點Q也隨之停止,連接PQ.設點P運動的時間為t秒(t>0).
          (1)AE的長是
          12
          12

          (2)用含t的代數(shù)式表示PE的長;
          (3)設△QPE面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
          (4)當以E、D、P、Q為頂點的四邊形是平行四邊形時,直接寫出t的值.

          【考點】四邊形綜合題
          【答案】12
          【解答】
          【點評】
          聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
          發(fā)布:2025/6/3 22:30:1組卷:175引用:3難度:0.1
          相似題
          • 1.如圖,在正方形ABCD中,O是AC的中點,E是AD上一點,連接BE,交AC于點H,作CF⊥BE于點F,AG⊥BE于點G,連接OF.
            (1)求證:AG=BF;
            (2)請找出線段FG與OF的數(shù)量關(guān)系并證明;
            (3)證明:FH2+HG2=2OH2

            發(fā)布:2025/6/5 16:30:2組卷:163引用:1難度:0.3
          • 2.閱讀理解
            材料一:一組對邊平行,另一組對邊不平行的四邊形叫梯形,其中平行的兩邊叫梯形的底邊,不平行的兩邊叫梯形的腰,連接梯形兩腰中點的線段叫梯形的中位線.梯形的中位線具有以下性質(zhì):
            梯形的中位線平行于兩底,并且等于兩底和的一半.
            如圖(1):在梯形ABCD中:AD∥BC
            ∵E、F是AB、CD的中點
            ∴EF∥AD∥BC
            EF=
            1
            2
            (AD+BC)
            材料二:經(jīng)過三角形一邊的中點與另一邊平行的直線必平分第三邊
            如圖(2):在△ABC中:
            ∵E是AB的中點,EF∥BC
            ∴F是AC的中點
            請你運用所學知識,結(jié)合上述材料,解答下列問題.
            如圖(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分別為AB、CD的中點,∠DBC=30°
            (1)求證:EF=AC;
            (2)若OD=3
            3
            ,OC=5,求MN的長.

            發(fā)布:2025/6/5 16:30:2組卷:635引用:5難度:0.5
          • 3.市一中某數(shù)學興趣小組利用正方形硬紙片開展了一次活動,請認真閱讀下面的探究片段,完成提出的問題.四邊形ABCD是邊長為3的正方形,點E是射線BC上的動點,∠AEF=90°,且EF交正方形外角的平分線CF于點F.【探究1】當點E是BC中點時,如圖1,發(fā)現(xiàn)AE=EF,這需要證明AE與EF所在的兩個三角形全等,但△ABE與△FCE顯然不全等,考慮到點E是BC的中點,取AB的中點H,連接EH,證明△AHE與△ECF全等即可.(無需證明)

            【探究2】(1)如圖2,如果把“點E是BC的中點”改成“點E是邊BC上(不與點B、C重合)的任意一點”,其他條件不變,那么結(jié)論“AE=EF”仍然成立嗎?如果成立,寫出證明過程,如果不成立,也請說明理由.
            (2)如圖3,如果點E是邊BC延長線上的任意一點,其他條件不變,請你畫出圖象,并判斷“AE=EF”是否成立?
            (填“是”或“否”),如果是,請簡述一下輔助線的作法;如果否,也請說明理由.

            【探究3】連接AF交直線CD于點I,連接EI,試探究線段BE,EI,ID之間的數(shù)量關(guān)系,請在備用圖中作出圖形并直接寫出結(jié)論.
            【探究4】當CE=2時,此時△EIF的面積為

            發(fā)布:2025/6/5 17:30:1組卷:433引用:2難度:0.1
          APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
          本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正