綜合與實踐
(1)我們在第十二章《全等三角形》中學習了全等三角形的性質和判定,在一些探究題中經常用以上知識轉化角和邊,進而解決問題.例如:我們在解決:“如圖1,在△ABC中,∠ACB=90°,AC=BC,線段DE經過點C,且AD⊥DE于點D,BE⊥DE于點E.求證:AD=CE,CD=BE“;這個問題時,只要證明 △ADC△ADC≌△CEB△CEB,即可得到解決;(填空,不需證明)

類比應用
(2)如圖2,在平面直角坐標系中,點A、C分別在y軸和x軸上,點A坐標為(0,3),點C(1,0),若△ABC是等腰直角三角形,∠ACB=90°,AC=BC,求點B的坐標.
拓展提升
(3)如圖3,平面直角坐標系中,若△ABC是等腰直角三角形,∠ACB=90°,AC=BC,點D是第一象限AB上方一點,且∠ADB=90°,連接CD.
①求∠CDB的度數;
②若CD長為4,求四邊形ACBD的面積.
【考點】三角形綜合題.
【答案】△ADC;△CEB
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/10/12 11:0:2組卷:368引用:2難度:0.5
相似題
-
1.如圖1,△ABC和△CDE都是等邊三角形,且A,C,E在同一條直線上,分別連接AD,BE.
(1)求證:AD=BE;
(2)如圖2,連接BD,若M,N,Q分別為AB,DE,BD的中點,過N作NP⊥MN與MQ的延長線交于P,求證:MP=AD;
(3)如圖3,設AD與BE交于F點,點M在AB上,MG∥AD,交BE于H,交CF的延長線于G,試判斷△FGH的形狀.發布:2025/5/24 17:0:2組卷:45引用:1難度:0.1 -
2.仔細閱讀以下內容解決問題:第24屆國際數學家大會會標,設兩條直角邊的邊長為a,b,則面積為
ab,四個直角三角形面積和小于正方形的面積得:a2+b2≥2ab,當且僅當a=b時取等號.在a2+b2≥2ab中,若a>0,b>0,用12、a代替a,b得,a+b≥2b,即ab(*),我們把(*)式稱為基本不等式.利用基本不等式我們可以求這個式子的最大最小值.我們以“已知x為實數,求y=a+b2≥ab的最小值”為例給同學們介紹.x2+4x2+1
解:由題知y=,x2+1+3x2+1=x2+1+3x2+1
∴>0,x2+1>0,3x2+1
∴y=,當且僅當x2+1+3x2+1≥2x2+1?3x2+1=23時取等號,即當x=x2+1=3x2+1時,函數的最小值為22.3
總結:利用基本不等式(a>0,b>0)求最值,若ab為定值.則a+b有最小值.a+b2≥ab
請同學們根據以上所學的知識求下列函數的最值,并求出取得最值時相應x的取值.
(1)若x>0,求y=2x+的最小值;2x
(2)若x>2,求y=x+的最小值;1x-2
(3)若x≥0,求y=的最小值.x+4x+13x+2發布:2025/5/24 19:30:1組卷:236引用:3難度:0.5 -
3.(1)如圖1,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一點,AE=5,ED⊥AB,垂足為D,求AD的長.
(2)類比探究:如圖2,△ABC中,AC=14,BC=6,點D,E分別在線段AB,AC上,∠EDB=∠ACB=60°,DE=2.求AD的長.
(3)拓展延伸:如圖3,△ABC中,點D,點E分別在線段AB,AC上,∠EDB=∠ACB=60°.延長DE,BC交于點F,AD=4,DE=5,EF=6,DE<BD,=;BD=.BCAC發布:2025/5/24 16:30:1組卷:1046引用:6難度:0.1