閱讀下列材料:
1×2=13(1×2×3-0×1×2),
2×3=13(2×3×4-1×2×3),
3×4=13(3×4×5-2×3×4),
由以上三個等式相加,可得:1×2+2×3+3×4=13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+13(3×4×5-2×3×4)=13(1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4)=13×3×4×5=20.
根據(jù)以上材料,請你完成下列各題:
(1)1×2+2×3+3×4+…+10×11;(寫出過程)
(2)1×2+2×3+3×4+…+n(n+1)=13n×(n+1)×(n+2)13n×(n+1)×(n+2);(用含n的代數(shù)式表示)
(3)根據(jù)以上學(xué)習(xí)經(jīng)驗(yàn),猜想1×2×3+2×3×4+…+18×19×20=3591035910.(寫出最后結(jié)果)
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
【考點(diǎn)】規(guī)律型:數(shù)字的變化類;有理數(shù)的混合運(yùn)算.
【答案】n×(n+1)×(n+2);35910
1
3
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/25 0:0:1組卷:138引用:2難度:0.3
相似題
-
1.觀察下列等式:
第1個等式:;(1-13)÷43=12
第2個等式:;(1-14)÷98=23
第3個等式:;(1-15)÷1615=34
第4個等式:;(1-16)÷2524=45
第5個等式:;(1-17)÷3635=56
……
按照以上規(guī)律,解決下列問題:
(1)寫出第6個等式:;
(2)寫出你猜想的第n個等式 (用含n的等式表示),并證明.發(fā)布:2025/5/25 18:30:1組卷:100引用:3難度:0.7 -
2.德國數(shù)學(xué)家萊布尼茨發(fā)現(xiàn)了如圖所示的單位分?jǐn)?shù)三角形(單位分?jǐn)?shù)是分子為1,分母為正整數(shù)的分?jǐn)?shù)),又稱為萊布尼茨三角形,根據(jù)前5行的規(guī)律,寫出第6行的第三個數(shù):.
發(fā)布:2025/5/25 21:30:1組卷:83引用:3難度:0.7 -
3.設(shè)
(n為正整數(shù)),若f(1)=n2,則( )f(x)=a1x+a2x2+…+anxnA.a(chǎn)n=2n-1, 的最小值為1f(13)B.a(chǎn)n=n, 的最小值為f(13)13C.a(chǎn)n=2n-1, 的最小值為f(13)13D.a(chǎn)n=n, 的最小值為f(13)23發(fā)布:2025/5/25 19:30:2組卷:186引用:1難度:0.3