已知拋物線y=x2+(2a-1)x-2a(a是常數).
(1)證明:該拋物線與x軸總有交點;
(2)設該拋物線與x軸的一個交點為A(m,0),若-8<m≤-5,求a的取值范圍;
(3)在(2)的條件下,若a為整數,將拋物線在x軸下方的部分沿x軸向上翻折.其余部分保持不變,得到一個新圖象G,請你結合新圖象,探究直線y=kx+2(k為常數)與新圖象G公共點個數的情況.
【考點】二次函數綜合題.
【答案】(1)見解答;(2)≤a<4;(3)k<-2或k>,2個;k=-2或,3個;-2<k<,4個.
5
2
1
3
1
3
1
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:539引用:1難度:0.3
相似題
-
1.根據以下素材,探索完成任務.
如何設計噴水裝置的高度? 素材1 圖1為某公園的圓形噴水池,圖2是其示意圖,O為水池中心,噴頭A、B之間的距離為20米,噴射水柱呈拋物線形,水柱距水池中心7m處達到最高,高度為5m.水池中心處有一個圓柱形蓄水池,其底面直徑CD為12m,高CF為1.8米. 素材2 如圖3,擬在圓柱形蓄水池中心處建一噴水裝置OP (OP⊥CD),并從點P向四周噴射與圖2中形狀相同的拋物線形水柱,且滿足以下條件:
①水柱的最高點與點P的高度差為0.8m;
②不能碰到圖2中的水柱;
③落水點G,M的間距滿足:GM:FM=2:7.問題解決 任務1 確定水柱形狀 在圖2中以點O為坐標原點,水平方向為x軸建立直角坐標系,并求左邊這條拋物線的函數表達式. 任務2 探究落水點位置 在建立的坐標系中,求落水點G的坐標. 任務3 擬定噴水裝置的高度 求出噴水裝置OP的高度. 發布:2025/5/23 4:30:1組卷:756引用:3難度:0.3 -
2.已知拋物線y=ax2+bx 經過點A(2,0)與點(-1,3).
(1)求拋物線的解析式;
(2)直線y=kx+2與拋物線y=ax2+bx交于點M,N(點M,點N分別在第一、二象限).
①如圖1,連接OM,當∠OMN=45°時,求k的值;
②如圖2,直線AN交y軸于點E,直線AM交y軸于點F,當時,求k的值.EF=57發布:2025/5/23 4:30:1組卷:298引用:1難度:0.2 -
3.如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(5,0),與y軸交于點C,其對稱軸為直線x=2,結合圖象分析如下結論:①abc>0;②b+3a<0;③當x>0時,y隨x的增大而增大;④若一次函數y=kx+b(k≠0)的圖象經過點A,則點E(k,b)在第四象限;⑤點M是拋物線的頂點,若CM⊥AM,則a=
.其中正確的有( )66A.1個 B.2個 C.3個 D.4個 發布:2025/5/23 5:0:2組卷:3755引用:22難度:0.2