如圖,在平面直角坐標(biāo)系中,拋物線y=12x2+bx+c與直線AB交于點(diǎn)A(0,-4),B(4,0).
(1)求該拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P是直線AB下方拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的平行線交AB于點(diǎn)C,過(guò)點(diǎn)P作y軸的平行線交x軸于點(diǎn)D,求PC+PD的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在(2)中PC+PD取得最大值的條件下,將該拋物線沿水平方向向左平移5個(gè)單位,點(diǎn)E為點(diǎn)P的對(duì)應(yīng)點(diǎn),平移后的拋物線與y軸交于點(diǎn)F,M為平移后的拋物線的對(duì)稱軸上一點(diǎn).在平移后的拋物線上確定一點(diǎn)N,使得以點(diǎn)E,F(xiàn),M,N為頂點(diǎn)的四邊形是平行四邊形,寫(xiě)出所有符合條件的點(diǎn)N的坐標(biāo),并寫(xiě)出求解點(diǎn)N的坐標(biāo)的其中一種情況的過(guò)程.
Ⅷ
1
2
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=x2-x-4;
(2)PC+PD的最大值為,此時(shí)點(diǎn)P的坐標(biāo)是(,-);
(3)N的坐標(biāo)為:(,)或(-,)或(-,).
1
2
(2)PC+PD的最大值為
25
4
3
2
35
8
(3)N的坐標(biāo)為:(
1
2
45
8
1
2
13
8
15
2
13
8
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:2843引用:5難度:0.1
相似題
-
1.已知,如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊BC在x軸上,直角頂點(diǎn)A在y軸的正半軸上,AB=
,AC=25.5
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求過(guò)A、B、C三點(diǎn)的拋物線的解析式和對(duì)稱軸;
(3)設(shè)點(diǎn)P是拋物線在第一象限部分上的點(diǎn),△PAC的面積為S,求使S面積最大時(shí)點(diǎn)P的坐標(biāo);
(4)在拋物線對(duì)稱軸上,是否存在這樣點(diǎn)M,使得△AMP為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/5/22 20:30:1組卷:67引用:1難度:0.4 -
2.對(duì)于某些三角形,我們可以直接用面積公式或是用割補(bǔ)法等來(lái)求它們的面積,下面我們研究一種求面積的新方法:如圖1所示,分別過(guò)三角形的頂點(diǎn)A、C作水平線的鉛垂線l1、l2,l1、l2之間的距離d叫做水平寬;如圖1所示,過(guò)點(diǎn)B作水平線的鉛垂線交AC于點(diǎn)D,稱線段BD的長(zhǎng)叫做這個(gè)三角形的鉛垂高.
結(jié)論提煉:容易證明,“三角形的面積等于水平寬與鉛垂高乘積的一半”,即“”.S=12dh
嘗試應(yīng)用:
已知:如圖2,點(diǎn)A(-5,3)、B(4,0)、C(0,6),則△ABC的水平寬為 ,鉛垂高為 ,所以△ABC的面積為 .
學(xué)以致用:
如圖3,在平面直角坐標(biāo)系中,拋物線的解析式為:y=-x2+2x+3,點(diǎn)B為拋物線的頂點(diǎn),圖象與y軸交于點(diǎn)A,與x軸交于E、C兩點(diǎn),BD為△ABC的鉛垂高,延長(zhǎng)BD交x軸于點(diǎn)F,則頂點(diǎn)B坐標(biāo)為 ,鉛垂高BD=,△ABC的面積為 .發(fā)布:2025/5/22 20:30:1組卷:579引用:1難度:0.4 -
3.已知拋物線y=ax2+bx+3 經(jīng)過(guò)點(diǎn)A(2,3).
(1)用含a的式子表示b;
(2)若拋物線開(kāi)口向上,點(diǎn)P(m,n)是拋物線上一動(dòng)點(diǎn),當(dāng)-1≤m≤2時(shí),n的最大值是5,求a的值.
(3)將點(diǎn)M(-1,4)向右平移5個(gè)單位長(zhǎng)度得到點(diǎn)N,若線段MN與拋物線只有一個(gè)公共點(diǎn),直接寫(xiě)出a的取值范圍.發(fā)布:2025/5/22 20:30:1組卷:459引用:1難度:0.3