對于某些三角形,我們可以直接用面積公式或是用割補法等來求它們的面積,下面我們研究一種求面積的新方法:如圖1所示,分別過三角形的頂點A、C作水平線的鉛垂線l1、l2,l1、l2之間的距離d叫做水平寬;如圖1所示,過點B作水平線的鉛垂線交AC于點D,稱線段BD的長叫做這個三角形的鉛垂高.

結論提煉:容易證明,“三角形的面積等于水平寬與鉛垂高乘積的一半”,即“S=12dh”.
嘗試應用:
已知:如圖2,點A(-5,3)、B(4,0)、C(0,6),則△ABC的水平寬為 99,鉛垂高為 143143,所以△ABC的面積為 2121.
學以致用:
如圖3,在平面直角坐標系中,拋物線的解析式為:y=-x2+2x+3,點B為拋物線的頂點,圖象與y軸交于點A,與x軸交于E、C兩點,BD為△ABC的鉛垂高,延長BD交x軸于點F,則頂點B坐標為 (1,4)(1,4),鉛垂高BD=22,△ABC的面積為 33.
S
=
1
2
dh
14
3
14
3
【考點】二次函數綜合題.
【答案】9;;21;(1,4);2;3
14
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/22 20:30:1組卷:579引用:1難度:0.4
相似題
-
1.如圖,已知過坐標原點的拋物線經過A(-2,0),B(-3,3)兩點,拋物線的頂點為C.
(1)求拋物線的函數表達式;
(2)P是拋物線在第一象限內的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P、M、A為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.發布:2025/5/23 2:30:1組卷:44引用:1難度:0.1 -
2.在平面直角坐標系xOy中,拋物線y=ax2+bx+2(a≠0)與x軸交于點A(-1,0),B(2,0),與y軸交于點C,點F是拋物線上一動點.
(1)求拋物線的解析式;
(2)當點F在第一象限運動時,連接線段AF,BF,CF,S△ABF=S1,S△CBF=S2,且S=S1+S2.當S取最大值時,求點F的坐標;
(3)過點F作FE⊥x軸交直線BC于點D,交x軸于點E,若∠FCD+∠ACO=45°,求點F的坐標.發布:2025/5/23 3:0:1組卷:458引用:3難度:0.1 -
3.在平面直角坐標系中,O為坐標原點,直線y=-x+3與x軸、y軸分別交于B、C兩點,拋物線y=-x2+bx+c經過B、C兩點,與x軸的另一個交點為A.
(1)如圖1,求b、c的值;
(2)如圖2,點P是第一象限拋物線y=-x2+bx+c上一點,直線AP交y軸于點D,設點P的橫坐標為t,△ADC的面積為S,求S與t的函數關系式;
(3)如圖3,在(2)的條件下,E是直線BC上一點,∠EPD=45°,△ADC的面積S為,求E點坐標.54發布:2025/5/23 3:0:1組卷:205引用:1難度:0.1