試卷征集
          加入會員
          操作視頻

          對于某些三角形,我們可以直接用面積公式或是用割補法等來求它們的面積,下面我們研究一種求面積的新方法:如圖1所示,分別過三角形的頂點A、C作水平線的鉛垂線l1、l2,l1、l2之間的距離d叫做水平寬;如圖1所示,過點B作水平線的鉛垂線交AC于點D,稱線段BD的長叫做這個三角形的鉛垂高.

          結論提煉:容易證明,“三角形的面積等于水平寬與鉛垂高乘積的一半”,即“
          S
          =
          1
          2
          dh
          ”.
          嘗試應用:
          已知:如圖2,點A(-5,3)、B(4,0)、C(0,6),則△ABC的水平寬為
          9
          9
          ,鉛垂高為
          14
          3
          14
          3
          ,所以△ABC的面積為
          21
          21

          學以致用:
          如圖3,在平面直角坐標系中,拋物線的解析式為:y=-x2+2x+3,點B為拋物線的頂點,圖象與y軸交于點A,與x軸交于E、C兩點,BD為△ABC的鉛垂高,延長BD交x軸于點F,則頂點B坐標為
          (1,4)
          (1,4)
          ,鉛垂高BD=
          2
          2
          ,△ABC的面積為
          3
          3

          【考點】二次函數綜合題
          【答案】9;
          14
          3
          ;21;(1,4);2;3
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2025/5/22 20:30:1組卷:579引用:1難度:0.4
          相似題
          • 1.如圖,已知過坐標原點的拋物線經過A(-2,0),B(-3,3)兩點,拋物線的頂點為C.
            (1)求拋物線的函數表達式;
            (2)P是拋物線在第一象限內的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P、M、A為頂點的三角形與△BOC相似?若存在,求出點P的坐標;若不存在,請說明理由.

            發布:2025/5/23 2:30:1組卷:44引用:1難度:0.1
          • 2.在平面直角坐標系xOy中,拋物線y=ax2+bx+2(a≠0)與x軸交于點A(-1,0),B(2,0),與y軸交于點C,點F是拋物線上一動點.
            (1)求拋物線的解析式;
            (2)當點F在第一象限運動時,連接線段AF,BF,CF,S△ABF=S1,S△CBF=S2,且S=S1+S2.當S取最大值時,求點F的坐標;
            (3)過點F作FE⊥x軸交直線BC于點D,交x軸于點E,若∠FCD+∠ACO=45°,求點F的坐標.

            發布:2025/5/23 3:0:1組卷:458引用:3難度:0.1
          • 3.在平面直角坐標系中,O為坐標原點,直線y=-x+3與x軸、y軸分別交于B、C兩點,拋物線y=-x2+bx+c經過B、C兩點,與x軸的另一個交點為A.
            (1)如圖1,求b、c的值;
            (2)如圖2,點P是第一象限拋物線y=-x2+bx+c上一點,直線AP交y軸于點D,設點P的橫坐標為t,△ADC的面積為S,求S與t的函數關系式;
            (3)如圖3,在(2)的條件下,E是直線BC上一點,∠EPD=45°,△ADC的面積S為
            5
            4
            ,求E點坐標.

            發布:2025/5/23 3:0:1組卷:205引用:1難度:0.1
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正