已知AC,EC分別是四邊形ABCD和EFCG的對角線,點E在△ABC內,∠CAE+∠CBE=90°.

(1)如圖①,當四邊形ABCD和EFCG均為正方形時,連接BF.
(i)求證:△CAE∽△CBF;
(ii)若BE=1,AE=2,求CE的長;
(2)如圖②,當四邊形ABCD和EFCG均為矩形,且ABBC=EFFC=k時,若BE=1,AE=2,CE=3,求k的值;
(3)如圖③,當四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時,設BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關系.(直接寫出結果,不必寫出解答過程)
AB
BC
EF
FC
【考點】四邊形綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:4303引用:6難度:0.1
相似題
-
1.綜合與實踐
折一折:將正方形紙片ABCD折疊,使邊AB,AD都落在對角線AC上,展開得折痕AE,AF,連接EF,如圖①.
(1)∠EAF=°,寫出圖中兩個等腰三角形:(不需要添加字母);
轉一轉:將圖①中的∠EAF繞點A旋轉.使它的兩邊分別交邊BC,CD于點P,Q,連接PQ,如圖②.
(2)線段BP,PQ,DQ之間的數量關系為 ;
剪一剪:將圖中的正方形紙片沿對角線BD剪開,如圖③.
(3)求證:BM2+DN2=MN2;
(4)如圖④,在等腰三角形ABC中,∠BAC=45°,AB=AC,D是BC邊上任意一點(不與點B,C重合)連接AD.以A為頂點,AD為腰向兩側分別作頂角均為45°的等腰三角形AED和等腰三角形AFD,DE,DF分別交AB,AC于點M,N,連接EF,分別交AB,AC于點P,Q.設AM=a,AB=b,則AD=(用a,b表示).發布:2025/5/25 11:30:2組卷:223引用:1難度:0.2 -
2.在平行四邊形ABCD中,∠BCD=α,AD>AB,DE平分∠ADC交線段BC于點E,在?ABCD的外部作△BEF,使BF=EF,∠EBF=
α,連接AC,AF,線段AF與BC交于點N.12
(1)當α=120°時,請直接寫出線段AF和AC的數量關系;
(2)當α=90°時,
①請寫出線段AF,AB,AD之間的數量關系,并說明理由;
②若點E是BC的三等分點,請直接寫出sin∠BAN的值.發布:2025/5/25 11:30:2組卷:140引用:1難度:0.3 -
3.某數學興趣小組在數學課外活動中,對多邊形內兩條互相垂直的線段做了如下探究:
【觀察與猜想】
(1)如圖1,在正方形ABCD中,點E,F分別是AB,AD上的兩點,連接DE,CF,DE⊥CF,則的值為 ;DECF
【類比探究】
(2)如圖2,在矩形ABCD中,AD=7,CD=4,點E是AD上的一點,連接CE,BD,且CE⊥BD,求的值;CEBD
【拓展延伸】
(3)如圖,在四邊形ABCD中,∠A=∠B=90°,點E為AB上一點,連接DE,過點C作DE的垂線交ED的延長線于點G,交AD的延長線于點F,且AD=2,DE=3,CF=4.求AB的長.發布:2025/5/25 12:0:2組卷:620引用:6難度:0.2