已知函數(shù)f(x)=(a-1)lnx+x+ax,g(x)=ax(其中a∈R).
(1)討論f(x)的單調(diào)性;
(2)對(duì)于任意x∈(1,e],都有f(x)>g(x)成立,求a的取值范圍.
f
(
x
)
=
(
a
-
1
)
lnx
+
x
+
a
x
g
(
x
)
=
a
x
【答案】(1)當(dāng)a=-1時(shí),函數(shù)f(x)在(0,+∞)單調(diào)遞增,
當(dāng)a<-1時(shí),函數(shù)f(x)在(0,1)和(-a,+∞)上單調(diào)遞增,在(1,-a)上單調(diào)遞減,
當(dāng)-1<a<0時(shí),函數(shù)f(x)在(0,-a)和(1,+∞)上單調(diào)遞增,在(-a,1)上單調(diào)遞減,
當(dāng)a≥0時(shí),函數(shù)f(x)在(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減.
(2)(1-e,+∞).
當(dāng)a<-1時(shí),函數(shù)f(x)在(0,1)和(-a,+∞)上單調(diào)遞增,在(1,-a)上單調(diào)遞減,
當(dāng)-1<a<0時(shí),函數(shù)f(x)在(0,-a)和(1,+∞)上單調(diào)遞增,在(-a,1)上單調(diào)遞減,
當(dāng)a≥0時(shí),函數(shù)f(x)在(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減.
(2)(1-e,+∞).
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/29 8:0:10組卷:90引用:6難度:0.4
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:236引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( )
A.(-∞,-1)∪(0,1) B.(-2,-1)∪(1,2) C.(-1,0)∪(1,+∞) D.(-∞,-2)∪(2,+∞) 發(fā)布:2024/12/29 13:0:1組卷:265引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:143引用:2難度:0.2