綜合與探究
如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx-8與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,直線l經(jīng)過坐標(biāo)原點(diǎn)O,與拋物線的一個交點(diǎn)為D,與拋物線的對稱軸交于點(diǎn)E,連接CE,已知點(diǎn)A,D的坐標(biāo)分別為(-2,0),(6,-8).
(1)求拋物線的函數(shù)表達(dá)式,并分別求出點(diǎn)B和點(diǎn)E的坐標(biāo);
(2)試探究拋物線上是否存在點(diǎn)F,使△FOE≌△FCE?若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)P是y軸負(fù)半軸上的一個動點(diǎn),設(shè)其坐標(biāo)為(0,m),直線PB與直線l交于點(diǎn)Q,試探究:當(dāng)m為何值時,△OPQ是等腰三角形.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/21 16:30:2組卷:3083引用:12難度:0.1
相似題
-
1.如圖,在平面直角坐標(biāo)系中,一次函數(shù)
的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線關(guān)于直線x=y=-12x+2對稱,且經(jīng)過A,C兩點(diǎn),與x軸交于另一點(diǎn)為B.12
(1)求拋物線的解析式;
(2)若點(diǎn)P為直線AC上方的拋物線上的一點(diǎn),過點(diǎn)P作PQ⊥x軸于M,交AC于Q,求PQ的最大值,并求此時P點(diǎn)的坐標(biāo);
(3)在拋物線的對稱軸上找一點(diǎn)D,使△ADC是以AC為直角邊的直角三角形,請求出點(diǎn)D的坐標(biāo).發(fā)布:2025/5/21 21:30:1組卷:295引用:1難度:0.5 -
2.定義:若函數(shù)圖象上存在點(diǎn)M(m,n1),M'(m+1,n2),且滿足n2-n1=t,則稱t為該函數(shù)的“域差值”.例如:函數(shù)y=2x+3,當(dāng)x=m時,n1=2m+3;當(dāng)x=m+1時,n2=2m+5,n2-n1=2 則函數(shù)y=2x+3的“域差值”為2.
(1)點(diǎn)M(m,n1),M'(m+1,n2)在的圖象上,“域差值”t=-4,求m的值;y=4x
(2)已知函數(shù)y=-2x2(x>0),求證該函數(shù)的“域差值”t<-2;
(3)點(diǎn)A(a,b)為函數(shù) y=-2x2 圖象上的一點(diǎn),將函數(shù)y=-2x2(x≥a)的圖象記為W1,將函數(shù) y=-2x2(x≤a)的圖象沿直線y=b翻折后的圖象記為W2.當(dāng)W1,W2兩部分組成的圖象上所有的點(diǎn)都滿足“域差值”t≤1時,求a的取值范圍.發(fā)布:2025/5/21 22:0:1組卷:1571引用:3難度:0.3 -
3.如圖,拋物線y=ax2+bx+2與x軸交于兩點(diǎn)A(-1,0)和B(4,0),與y軸交于點(diǎn)C,連接AC、BC.
(1)求拋物線的解析式;
(2)點(diǎn)D是△ABC邊上一點(diǎn),連接OD,將線段OD以O(shè)為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)90°,得到線段OE,若點(diǎn)E落在拋物線上,求出此時點(diǎn)E的坐標(biāo);
(3)點(diǎn)M在線段AB上(與A、B不重合),點(diǎn)N在線段BC上(與B,C不重合),是否存在以C,M,N為頂點(diǎn)的三角形與△ABC相似,若存在,請直接寫出點(diǎn)N的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/5/21 22:0:1組卷:1082引用:5難度:0.3