等面積法是一種常用的、重要的數學解題方法.它是利用“同一個圖形的面積相等”、“分割圖形后各部分的面積之和等于原圖形的面積”、“同底等高或等底同高的兩個三角形面積相等”等性質解決有關數學問題.在解題中,靈活運用等面積法解決相關問題,可以使解題思路清晰,解題過程簡便快捷.
請用等面積法的思想解決下列問題:
(1)在直角三角形中,兩直角邊長分別為3和4,則該直角三角形斜邊上的高的長為 125125;

?(2)如圖1,反比例函數y=-6x(x>0)的圖象上有一點P,PA⊥x軸于點A,點B在y軸上,則△PAB的面積為 33.
(3)如圖2,P是邊長為a的正△ABC 內任意一點,點O為△ABC的中心,設點P到△ABC各邊距離分別為h1,h2,h3,連接AP,BP,CP,由等面積法,易知12a(h1+h2+h3)=S△ABC=3S△OAB,可得h1+h2+h3=32a;如圖3,若P是邊長為4的正五邊形ABCDE內任意一點,設點P到五邊形ABCDE各邊距離分別為h1,h2,h3,h4,h5,參照上面的探索過程,求h1+h2+h3+h4+h5的值.(參考數據:tan36°≈23,tan54°≈32)
(4)如圖4,已知⊙O的半徑為1,點A為⊙O外一點,OA=2,AB切⊙O于點B,弦BC∥OA,連接AC,求圖中陰影部分的面積.(結果保留π)
(5)我國數學家祖暅,提出了一個祖暅原理:“冪勢既同,則積不容異”.意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等.如圖所示,某帳篷的造型是兩個全等圓柱垂直相交的公共部分的一半(這個公共部分叫做牟合方蓋),其中曲線AOC和BOD均是以1為半徑的半圓.用任意平行于帳篷底面ABCD的平面截帳篷,所得截面四邊形均為正方形,且該正方形的面積恰好等于與帳篷同底等高的正四棱柱中挖去一個倒放的同底等高的正四棱錐后同高度截面的面積(圖8中陰影部分的面積),因此該帳篷的體積為 2323.(正棱錐的體積V=13底面積×高)
?
12
5
12
5
6
x
1
2
a
(
h
1
+
h
2
+
h
3
)
=
S
△
ABC
=
3
S
△
OAB
3
2
2
3
3
2
2
3
2
3
1
3
【考點】三角形綜合題.
【答案】;3;
12
5
2
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/7/14 8:0:9組卷:139引用:1難度:0.5
相似題
-
1.定義:由一個三角形的三條中線圍成的三角形稱為原三角形的中線三角形.
問題:設中線三角形的面積為S1,原三角形的面積為S2.求的值.S1S2
特例探索:
(1)正三角形的邊長為2,則中線長為 ,所以=.S1S2
(2)如圖1,每個小正方形邊長均為1,點A,B,C,D,E,F,G均在網格點上.
①△CFG △ABC的中線三角形.(填“是”或“不是”)
②S△ABC=,S△CFG=,所以=.S1S2
一般情形:
如圖2,△ABC的三條中線分別是AD,BE,CF,將AD平移至CG,連結FG.
(3)求證:△CFG是△ABC的中線三角形;
(4)猜想的值,并說明理由.S1S2發布:2025/5/22 7:30:2組卷:144引用:1難度:0.1 -
2.在△ABC中,BD⊥AC,E為AB邊中點,連接CE,BD與CE相交于點F,過E作EM⊥EF,交BD于點M,連接CM.
(1)依題意補全圖形;
(2)求證:∠EMF=∠ACF;
(3)判斷BM、CM、AC的數量關系,并證明.發布:2025/5/22 6:0:1組卷:1096引用:3難度:0.2 -
3.【問題提出】
如圖(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,點E在△ABC內部,直線AD與BE交于點F.線段AF,BF,CF之間存在怎樣的數量關系?
【問題探究】
(1)如圖(2),當點D,F重合時,
①AF與BE的數量關系是 .
②=.CFBF-AF
(2)如圖(1),當點D,F不重合時,求的值.CFBF-AF
(3)【問題拓展】
如圖(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常數),點E在△ABC內部,直線AD與BE交于點F,求出線段AF,BF,CF之間的數量關系(用一個含有k的等式表示).發布:2025/5/22 8:0:2組卷:447難度:0.2