如圖,在平面直角坐標系中,直線y=2x+4與坐標軸分別交于A、B兩點,與反比例函數y=kx在第一象限交于點C(1,a),點D(7,b)是反比例函數y=kx上一點,連接CD并延長交x軸于點E.
(1)求b的值;
(2)連接BE,若點P是線段BE上一動點,連接CP.當S△PCE=152時,求點P的坐標;
(3)若點M是x軸上一動點,點N為平面內一點,在(2)的條件下,是否存在以A、P、M、N四點為頂點的菱形?請直接寫出點N的坐標.

y
=
k
x
y
=
k
x
S
△
PCE
=
15
2
【考點】反比例函數綜合題.
【答案】(1)b=;
(2)P(2,3);
(3)點N的坐標為(7,3)或(-3,3)或(2,-3)或(-,3).
6
7
(2)P(2,3);
(3)點N的坐標為(7,3)或(-3,3)或(2,-3)或(-
9
8
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/13 8:0:9組卷:208引用:1難度:0.2
相似題
-
1.在平面直角坐標系xOy中,對于P(a,b)和點Q(a,b′),給出如下定義:若b′=
,則稱點Q為點P的限變點.例如:點(2,3)的限變點的坐標是(2,3),點(-2,5)的限變點的坐標是(-2,-5).b(a≥1)-b(a<1)
(1)點(,1)的限變點的坐標是;3
(2)判斷點A(-2,-1)、B(-1,2)中,哪一個點是函數y=圖象上某一個點的限變點?并說明理由;2x
(3)若點P(a,b)在函數y=-x+3的圖象上,其限變點Q(a,b′)的縱坐標的取值范圍是-6≤b′≤-3,求a的取值范圍.發布:2025/6/9 9:30:1組卷:198引用:2難度:0.3 -
2.如圖,在平面直角坐標系中有Rt△ABC,∠A=90°,AB=AC,A(-8,0)、C(-9,3),點B,C在第二象限內.
(1)點B的坐標 ;
(2)將Rt△ABC以每秒1個單位的速度沿x軸向右平移t秒,若存在某時刻t,使在第一象限內點B,C兩點的對應點B',C′正好落在某反比例函數y=的圖象上,請求出此時t的值以及這個反比例函數的解析式;kx
(3)在(2)的情況下,將Rt△A′B'C′向下平移m個單位,當直線B′C′與y=的圖象有且只有一個公共點,請求出m的值.kx發布:2025/6/9 10:30:1組卷:153引用:4難度:0.4 -
3.在平面直角坐標系xOy中,對于點M(x1,y1),給出如下定義:當點N(x2,y2),滿足x1?x2=-y1?y2時,稱點N是點M的負等積點已知點M(1,2).
(1)在N1(6,3),N2(4,-2),N3(-2,-1),N4(3,-1.5)中,點M的負等積點是 .
(2)如果點M的負等積點N在雙曲線上,求點N的坐標;y=-8x
(3)已知點P(8,2),Q(3,a),⊙Q的半徑為1,連接MP,點A在線段MP上.如果在⊙Q上存在點A的負等積點,直接寫出a的取值范圍.發布:2025/6/9 9:30:1組卷:67引用:2難度:0.3