試卷征集
          加入會員
          操作視頻

          鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作,在余下的四邊形紙片中再剪去一個菱形,余下一個四邊形,稱為第二次操作,…依此類推,若第n次余下的四邊形是菱形,則稱原平行四邊形為n階準菱形,如圖,?ABCD中,若AB=1,BC=2,則?ABCD為1階準菱形;?EFGH中,若EH=4x,EF=3x,則?EFGH為3階準菱形.
          (1)判斷與推理:
          鄰邊長分別為2和3的平行四邊形是
          2
          2
          階準菱形;
          (2)操作、探究、計算:
          ①已知?ABCD的邊長分別為1,a(a>1)且是3階準菱形,請畫出?ABCD及裁剪線的示意圖,并在下方寫出的a值.
          ②已知?ABCD的鄰邊長分別為a,b(a>b),滿足a=3b+m,b=4m,請寫出?ABCD是
          6
          6
          階準菱形.

          【答案】2;6
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/8/20 17:0:1組卷:263引用:5難度:0.4
          相似題
          • 1.如圖,在△ABC中,∠B=90°.
            (1)尺規作圖:在AC邊上找一點P,連接BP,使得∠CBP=∠C(保留作圖痕跡,不寫作法).
            (2)在(1)的條件下,若AB=6,BC=8,求線段BP的長.

            發布:2025/6/9 13:0:1組卷:86引用:3難度:0.6
          • 2.如圖,已知△ABC.
            (1)用尺規作圖作AB中點E,AC中點F,并連接EF(保留作圖痕跡)
            (2)我們知道,三角形的中位線平行于第三條邊,并且等于第三條邊的一般,請證明中位線定理.

            發布:2025/6/9 11:30:1組卷:76引用:1難度:0.6
          • 3.如圖,在△ABC中,∠ACB=90°.
            (1)實踐與操作:利用尺規作△ABC的外接圓,圓心為點O(要求:尺規作圖并保留作圖痕跡,不寫作法,標明字母).
            (2)猜想與證明:若∠CAB=60°,試猜想線段AC與⊙O半徑r的數量關系,并加以證明.

            發布:2025/6/9 9:0:9組卷:32引用:2難度:0.6
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正