先閱讀,后解題.
已知m2+2m+n2-6n+10=0,求m和n的值.
解:等式可變形為(m2+2m+1)+(n2-6n+9)=0.
即(m+1)2+(n-3)2=0.
∵(m+1)2≥0,(n-3)2≥0,
∴m+1=0,n-3=0,
∴m=-1,n=3.
像這樣將代數式進行恒等變形,使代數式中出現完全平方式的方法叫作“配方法”.
請你利用配方法,解決下列問題:
(1)已知a,b是長方形ABCD的長與寬,滿足a2+b2-8a-6b+25=0,則長方形ABCD的面積是 1212;
(2)求代數式a2+4b2+4ab-4a-8b+7的最小值,并求出此時a,b滿足的數量關系;
(3)請比較多項式x2+3x-4與2x2+2x-3的大小,并說明理由.
【答案】12
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/5/28 8:0:9組卷:271引用:3難度:0.4
相似題
-
1.設x,y都是實數,請探究下列問題,
(1)嘗試:①當x=-2,y=1時,∵x2+y2=5,2xy=-4,∴x2+y2>2xy.
②當x=1,y=2時,∵x2+y2=5,2xy=4,∴x2+y2>2xy.
③當x=2,y=2.5時,∵x2+y2=10.25,2xy=10,∴x2+y2>2xy.
④當x=3,y=3時,∵x2+y2=18,2xy=18,∴x2+y22xy.
(2)歸納:x2+y2與2xy有怎樣的大小關系?試說明理由.
(3)運用:求代數式的最小值.x2+4x2發布:2025/5/21 17:30:1組卷:188引用:2難度:0.5 -
2.關于x的一元二次方程新定義:若關于x的一元二次方程:a1(x-m)2+n=0與a2(x-m)2+n=0,稱為“同族二次方程”.如2(x-3)2+4=0與3(x-3)2+4=0就是“同族二次方程”.現有關于x的一元二次方程:2(x-1)2+1=0與(a+2)x2+(b-4)x+8=0是“同族二次方程”.那么代數式-ax2+bx+2015取的最大值是( )
A.2020 B.2021 C.2022 D.2023 發布:2025/5/24 6:0:2組卷:272引用:3難度:0.6 -
3.基本不等式的性質:一般地,對于a>0,b>0,我們有a+b≥2
,當且僅當a=b時等號成立.例如:若a>0,則a+ab=6,當且僅當a=3時取等號,a+9a≥2a?9a的最小值等于6.根據上述性質和運算過程,若x>1,則4x+9a的最小值是( )1x-1A.6 B.8 C.10 D.12 發布:2025/5/23 13:30:1組卷:839引用:6難度:0.4