如圖,點A為橢圓Γ:x24+y2=1的上頂點,圓C:x2+y2=1,過坐標原點O的直線l交橢圓Γ于M,N兩點.
(1)求直線AM,AN的斜率之積;
(2)設直線AM:y=kx+1(k≠0),AN與圓C交于P,Q兩點,記直線MN,PQ的斜率分別為k1,k2,探究是否存在實數λ,使得k1=λk2?若存在,求出λ的值;若不存在,請說明理由.
Γ
:
x
2
4
+
y
2
=
1
【考點】直線與圓錐曲線的綜合.
【答案】(1);
(2)存在,值為.
-
1
4
(2)存在,值為
5
8
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/7/5 8:0:9組卷:78引用:2難度:0.2
相似題
-
1.已知兩個定點坐標分別是F1(-3,0),F2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.發布:2024/12/29 10:30:1組卷:102引用:1難度:0.9 -
2.點P在以F1,F2為焦點的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標原點.E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點Q(m,0)(m為非零常數)的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且(λ為非零常數),問在x軸上是否存在定點G,使MQ=λQN?若存在,求出所有這種定點G的坐標;若不存在,請說明理由.F1F2⊥(GM-λGN)發布:2024/12/29 10:0:1組卷:72引用:5難度:0.7 -
3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( )條.
A.1 B.2 C.3 D.4 發布:2024/12/29 10:30:1組卷:26引用:5難度:0.7