如圖①,已知線段AC=6,B,O是線段AC的三等分點,以O為圓心,OB長為半徑在線段BC的上方作半圓O,以AB為邊在AB的上方作正方形ABFE,將正方形ABFE沿AC所在直線水平向右移動.

(1)如圖②,連接AF,當AF與半圓O相切時,設切點為D,求?CD的長(結果保留π);
(2)如圖②,在平移的過程中,設BF與半圓O交于點M,連接OM,CM,當∠BOM=60°時,求CM的長;
(3)如圖③,點G是半圓O上的一點,且到OC的距離為1,當點B到達點C后,正方形ABFE立即繞著點C順時針旋轉,當邊AB旋轉90°時停止,若正方形ABFE向右平移的速度為每秒2個單位長度,繞點C旋轉的速度為每秒15°,求點G在正方形ABFE內(含邊界)的時長.
?
CD
【考點】圓的綜合題.
【答案】(1);
(2);
(3)()秒.
3
2
π
(2)
2
3
(3)(
6
-
3
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:177引用:1難度:0.1
相似題
-
1.如圖,在△ABC中,AB=BC,∠ABC=90°,D是AB上一動點,連接CD,
以CD為直徑的⊙M交AC于點E,連接BM并延長交AC于點F,交⊙M于點G,連接BE.
(1)如圖1,當點D移動到使CD⊥BE時,
①連結DE,求證:BD=AE.
②求BD:BC的值.
(2)如圖2,當點D到移動到使=30°時,求證:AE2+CF2=EF2.?CG發布:2025/5/30 19:0:1組卷:181難度:0.1 -
2.如圖,線段AB=6,C在線段AB的一個動點,以AC、BC為邊作等邊三角形△ACD和等邊三角形△BCE,⊙O外接△DCE,
(1)△DCE的外接圓的圓心是△DCE的 (外心或內心);點O的位置是否發生改變 (變或不變).
(2)若AC=x,△DCE為直角三角形時,求x的值.
(3)點O在△DCE的內部,直接寫出x的取值范圍.
(4)求⊙O半徑的最小值.發布:2025/5/31 1:0:2組卷:93引用:2難度:0.3 -
3.如圖⊙O半徑為r,銳角△ABC內接于⊙O,連AO并延長交BC于D,過點D作DE⊥AC于E.
(1)如圖1,求證:∠DAB=∠CDE;
(2)如圖1,若CD=OA,AB=6,求DE的長;
(3)如圖2,當∠DAC=2∠DAB時,BD=5,DC=6,求r的值;
(4)如圖3,若AE=AB=BD=1,直接寫出AD+DE的值(用含r的代數式表示).發布:2025/5/31 2:0:7組卷:428引用:1難度:0.2