如圖,已知點A的坐標為(-2,0),直線y=-34x+3與x軸、y軸分別交于點B、C,連接AC,頂點為D的拋物線y=ax2+bx+c經過A、B、C三點.
(1)求拋物線的解析式及頂點D的坐標;
(2)設拋物線的對稱軸DE交線段BC于點E,P為第一象限內拋物線上一點,過點P作x軸的垂線,交線段BC于點F,若四邊形DEFP為平行四邊形,求點P的坐標;
(3)設點M是線段BC上的一個動點,過點M作MN∥AB,交AC于點N,在線段AB上是否存在點Q,使△QMN是以MN為直角邊的等腰直角三角形,若存在,直接寫出點Q的坐標;若不存在,請說明理由.

3
4
【考點】二次函數綜合題.
【答案】(1)拋物線的解析式為y=-x2+x+3,頂點D的坐標(1,);
(2)P(3,);
(3)(,0)或(-,0).
3
8
3
4
27
8
(2)P(3,
15
8
(3)(
4
3
2
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:342引用:1難度:0.1
相似題
-
1.已知拋物線y=-x2+bx+c與x軸交于A、B兩點(點A在點B的左側),與y軸的交點為C(0,3),其對稱軸是直線x=1,點P是拋物線上第一象限內的點,過點P作PQ⊥x軸,垂足為Q,交BC于點D,且點P的橫坐標為m.
(1)求這條拋物線對應的函數表達式;
(2)如圖1,PE⊥BC,垂足為E,當DE=BD時,求m的值;
(3)如圖2,連接AP,交BC于點H,則的最大值是 .PHAH發布:2025/5/30 2:30:1組卷:631引用:2難度:0.3 -
2.如圖,拋物線y=x2-2x-3與x軸交A,B兩點(A點在B點左側),直線l與拋物線交于A,C兩點,其中C點的橫坐標為2.
(1)求A,B 兩點的坐標及直線AC的函數表達式;
(2)P是線段AC上的一個動點,過P作y軸的平行線交拋物線于E點,求線段PE長度的最大值;
(3)點G是拋物線上的動點,在x軸上是否存在點F,使A,C,F,G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標;如果不存在,請說明理由.發布:2025/5/30 4:30:2組卷:317引用:3難度:0.3 -
3.如圖,在平面直角坐標系中,拋物線y=-2x2+mx+n經過點A(0,2),B(3,-4).
(1)求拋物線的表達式及頂點M的坐標;
(2)線段OB繞點O旋轉180°得到線段OC,點D是拋物線對稱軸上一動點,記拋物線在A,B之間的部分為圖象W(包含A,B兩點),若直線CD與圖象W有公共點,求△CAD面積的最大值;
(3)在(2)中,當直線CD與圖象W沒有公共點時,點D縱坐標t的取值范圍是 ;當直線CD與圖象W有公共點時,△CAD周長的最小值是 ;若點F是圖象W上一動點,四邊形AOBF面積的最大值是 .發布:2025/5/30 2:30:1組卷:127引用:1難度:0.2