甲、乙、丙三位同學(xué)進(jìn)行立定跳遠(yuǎn)比賽,每人輪流跳一次稱為一輪,每輪按名次從高到低分別得3分、2分、1分(沒(méi)有并列名次).他們一共進(jìn)行了五輪比賽,結(jié)果甲共得14分;乙第一輪得3分,第二輪得1分,且總分最低.那么丙得到的分?jǐn)?shù)是9分9分.
【考點(diǎn)】整數(shù)問(wèn)題的綜合運(yùn)用.
【答案】9分
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/28 5:0:1組卷:219引用:4難度:0.5
相似題
-
1.在右邊的加法算式中,每一個(gè)□表示一個(gè)數(shù)字,任意兩個(gè)數(shù)字都不相同,那么A與B乘積的最大值是
發(fā)布:2025/5/28 16:0:1組卷:41引用:1難度:0.5 -
2.x,y為正整數(shù),且兩個(gè)分?jǐn)?shù)之和
也是整數(shù),求證:這兩個(gè)分?jǐn)?shù)都是整數(shù).x2-1y+1+y2-1x+1發(fā)布:2025/5/28 16:0:1組卷:66引用:1難度:0.1 -
3.已知下面等式對(duì)任意實(shí)數(shù)x都成立(n為正整數(shù)):(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x2+…+anxn,且a1+a2+a3+…+an=57,則滿足條件的n的可能值是
發(fā)布:2025/5/28 16:30:2組卷:78引用:2難度:0.5
相關(guān)試卷