“配方法”是指將一個式子或一個式子的某一部分通過恒等變形化為完全平方式或幾個完全平方式的和.它是數(shù)學(xué)的重要方法,可以解決多項式、方程的相關(guān)問題.如:我們可以通過“配方法”求代數(shù)式x2+4x+2的最小值.
x2-4x+2=x2-2?x?2+22-4+2=(x-2)2-2,
∵(x-2)2≥0,
∴當(dāng)x=2時,x2+4x+1有最小值-2.
請閱讀上述“配方法”的應(yīng)用,并解答下列問題:
(1)若x2+2x+5=(x+a)2+b,請求出a、b的值;
(2)試說明代數(shù)式6x-7-x2的值都不大于2;
(3)若代數(shù)式6x2+3kx+3的最小值為-3,試求出k的值.
【答案】(1)a=1,b=4;
(2)過程見解答;
(3)4或-4.
(2)過程見解答;
(3)4或-4.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:98引用:1難度:0.7
相似題
-
1.設(shè)x,y都是實數(shù),請?zhí)骄肯铝袉栴},
(1)嘗試:①當(dāng)x=-2,y=1時,∵x2+y2=5,2xy=-4,∴x2+y2>2xy.
②當(dāng)x=1,y=2時,∵x2+y2=5,2xy=4,∴x2+y2>2xy.
③當(dāng)x=2,y=2.5時,∵x2+y2=10.25,2xy=10,∴x2+y2>2xy.
④當(dāng)x=3,y=3時,∵x2+y2=18,2xy=18,∴x2+y22xy.
(2)歸納:x2+y2與2xy有怎樣的大小關(guān)系?試說明理由.
(3)運用:求代數(shù)式的最小值.x2+4x2發(fā)布:2025/5/21 17:30:1組卷:188引用:2難度:0.5 -
2.關(guān)于x的一元二次方程新定義:若關(guān)于x的一元二次方程:a1(x-m)2+n=0與a2(x-m)2+n=0,稱為“同族二次方程”.如2(x-3)2+4=0與3(x-3)2+4=0就是“同族二次方程”.現(xiàn)有關(guān)于x的一元二次方程:2(x-1)2+1=0與(a+2)x2+(b-4)x+8=0是“同族二次方程”.那么代數(shù)式-ax2+bx+2015取的最大值是( )
A.2020 B.2021 C.2022 D.2023 發(fā)布:2025/5/24 6:0:2組卷:272引用:3難度:0.6 -
3.基本不等式的性質(zhì):一般地,對于a>0,b>0,我們有a+b≥2
,當(dāng)且僅當(dāng)a=b時等號成立.例如:若a>0,則a+ab=6,當(dāng)且僅當(dāng)a=3時取等號,a+9a≥2a?9a的最小值等于6.根據(jù)上述性質(zhì)和運算過程,若x>1,則4x+9a的最小值是( )1x-1A.6 B.8 C.10 D.12 發(fā)布:2025/5/23 13:30:1組卷:839引用:6難度:0.4