如圖,在菱形ABCD中,∠ABC=60°,E是對角線AC上一點.F是線段BC延長線上一點,且CF=AE,連接BE.
(1)發(fā)現(xiàn)問題
如圖①,若E是線段AC的中點,連接EF,其他條件不變,填空:線段BE與EF的數(shù)量關(guān)系是BE=EFBE=EF;
(2)探究問題
如圖②,若E是線段AC上任意一點,連接EF,其他條件不變,猜想線段BE與EF的數(shù)量關(guān)系是什么?請證明你的猜想;
(3)解決問題
如圖③,若E是線段AC延長線上任意一點,其他條件不變,且∠EBC=30°,AB=1,請直接寫出AF的長度.

【考點】四邊形綜合題.
【答案】BE=EF
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:539引用:5難度:0.2
相似題
-
1.已知正方形ABCD的邊長為4,△BEF為等邊三角形,點E在AB邊上,點F在AB邊的左側(cè).
(1)如圖1,若D,E,F(xiàn)在同一直線上,求BF的長;
(2)如圖2,連接AF,CE,BD,并延長CE交AF于點H,若CH⊥AF,求證:AE+2FH=BD;2
(3)如圖3,將△ABF沿AB翻折得到△ABP,點Q為AP的中點,連接CQ,若點E在射線BA上運動時,請直接寫出線段CQ的最小值.發(fā)布:2025/6/7 2:0:5組卷:1043引用:10難度:0.2 -
2.探究問題.
(1)方法感悟:
如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證:DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°,
∴∠2+∠3=.
∵∠1=∠2,
∴∠1+∠3=45°,即∠GAF=∠EAF.
又AG=AE,AF=AF,
△GAE≌.
∴GF=EF,故DE+BF=EF.
(2)方法遷移:
如圖②,將Rt△ABC沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.12
(3)問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足∠EAF=∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).12發(fā)布:2025/6/7 1:0:2組卷:119引用:1難度:0.1 -
3.如圖所示,在平面直角坐標(biāo)系中,點B的坐標(biāo)為(4,8),過點B分別作BA⊥y軸,BC⊥x軸,得到一個長方形OABC,D為y軸上的一點,將長方形OABC沿著直線DM折疊,使得點A與點C重合,點B落在點F處,直線DM交BC于點E.
(1)直接寫出點D的坐標(biāo) ;
(2)若點P為x軸上一點,是否存在點P使△PDE的周長最小?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.
(3)在(2)的條件下,若Q點是線段DE上一點(不含端點),連接PQ,有一動點H從P點出,發(fā),沿線段PQ以每秒1個單位的速度運動到點Q,再沿著線段QE以每秒個單位長度的速度運動到點E后停止,請求出點H在整個運動過程中所用的最少時間,并寫出此時點Q的坐標(biāo).5發(fā)布:2025/6/7 0:30:1組卷:78引用:1難度:0.1