在平面直角坐標系xOy中,拋物線y=-34x2+3x與x軸交于O,A兩點,過點A的直線y=-34x+3與y軸交于點C,交拋物線于點D.

(1)直接寫出點A,C,D的坐標;
(2)如圖1,點B是直線AC上方第一象限內拋物線上的動點,連接AB和BD,求△ABD面積的最大值;
(3)如圖2,若點M在拋物線上,點N在x軸上,當以A,D,M,N為頂點的四邊形是平行四邊形時,求點N的坐標.
y
=
-
3
4
x
2
+
3
x
y
=
-
3
4
x
+
3
【考點】二次函數綜合題.
【答案】(1)A(4,0),C(0,3),;
(2);
(3)N1(2,0),N2(6,0),,.
D
(
1
,
9
4
)
(2)
81
32
(3)N1(2,0),N2(6,0),
N
3
(
-
7
-
1
,
0
)
N
4
(
7
-
1
,
0
)
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:429引用:6難度:0.5
相似題
-
1.如圖,已知二次函數y=ax2+bx-4的圖象與x軸交于A,B兩點,(點A在點B左側),與y軸交于點C,點A的坐標為(-2,0),且對稱軸為直線x=1,直線AD交拋物線于點D(2,m).
(1)求二次函數的表達式;
(2)在拋物線的對稱軸上是否存在一點M,使△MAC的周長最小,若存在,求出點M的坐標;
(3)如圖2,點P是線段AB上的一動點(不與A、B重合),過點P作PE∥AD交BD于E,連接DP,當△DPE的面積最大時,求點P的坐標.發布:2025/6/6 20:30:1組卷:90引用:1難度:0.2 -
2.如圖,已知拋物線y=x2+bx+c與直線y=-x+3相交于坐標軸上的A,B兩點,頂點為C.
(1)填空:b=
(2)將直線AB向下平移h個單位長度,得直線EF.當h為何值時,直線EF與拋物線y=x2+bx+c沒有交點?
(3)直線x=m與△ABC的邊AB,AC分別交于點M,N.當直線x=m把△ABC的面積分為1:2兩部分時,求m的值.發布:2025/6/6 21:0:2組卷:327引用:5難度:0.3 -
3.如圖,拋物線y=ax2+bx+2經過點A(-1,0),B(4,0),交y軸于點C.
(1)求拋物線的表達式.
(2)點D為y軸右側拋物線上一點,是否存在點D,使S△ABC=S△ABD?若存在,請求出點D的坐標;若不存在,請說明理由.23
(3)將直線BC繞點B順時針旋轉45°,與拋物線交于另一點E,求點E的坐標.發布:2025/6/6 23:30:1組卷:40引用:1難度:0.3