如圖,在平面直角坐標系中,拋物線y=ax2+bx+2過點(1,3),且交x軸于點A(-1,0),B兩點,交y軸于點C.

(1)求拋物線的表達式;
(2)點P是直線BC上方拋物線上的一動點,過點P作PD⊥BC于點D,過點P作y軸的平行線交直線BC于點E,求△PDE周長的最大值及此時點P的坐標;
(3)在(2)中△PDE周長取得最大值的條件下,將該拋物線沿射線CB方向平移5個單位長度,點M為平移后的拋物線的對稱軸上一點.在平面內確定一點N,使得以點A,P,M,N為頂點的四邊形是菱形,寫出所有符合條件的點N的坐標,并寫出求解點N的坐標的其中一種情況的過程.
5
【考點】二次函數綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/5/2 8:0:9組卷:3066引用:6難度:0.3
相似題
-
1.如圖,已知二次函數y=ax2+bx-4的圖象與x軸交于A,B兩點,(點A在點B左側),與y軸交于點C,點A的坐標為(-2,0),且對稱軸為直線x=1,直線AD交拋物線于點D(2,m).
(1)求二次函數的表達式;
(2)在拋物線的對稱軸上是否存在一點M,使△MAC的周長最小,若存在,求出點M的坐標;
(3)如圖2,點P是線段AB上的一動點(不與A、B重合),過點P作PE∥AD交BD于E,連接DP,當△DPE的面積最大時,求點P的坐標.發布:2025/6/6 20:30:1組卷:90引用:1難度:0.2 -
2.如圖,拋物線y=ax2+bx+c的圖象交x軸于A(-3,0)、B兩點,頂點為點C(-1,-2
),連接BC.3
(1)求拋物線的解析式;
(2)如圖1,作∠ABC的角平分線BE,交對稱軸于交點D,交拋物線于點E,求DE的長;
(3)如圖2,在(2)的條件下,點F是線段BC上的一動點(點F不與點C和點B重合),連接DF,將△BDF沿DF折疊,點B的對應點為點B1,△DFB1與△BDC的重疊部分為△DFG,請探究,在坐標平面內是否存在一點H,使以點D、F、G、H為頂點的四邊形是矩形?若存在,請求出點H的坐標,若不存在,請說明理由.發布:2025/6/6 18:30:1組卷:663引用:4難度:0.1 -
3.如圖,已知拋物線y=x2+bx+c與直線y=-x+3相交于坐標軸上的A,B兩點,頂點為C.
(1)填空:b=
(2)將直線AB向下平移h個單位長度,得直線EF.當h為何值時,直線EF與拋物線y=x2+bx+c沒有交點?
(3)直線x=m與△ABC的邊AB,AC分別交于點M,N.當直線x=m把△ABC的面積分為1:2兩部分時,求m的值.發布:2025/6/6 21:0:2組卷:327引用:5難度:0.3
相關試卷